
User’s Guide
Version 3

Embedded Target for the
TI TMS320C6000™ DSP Platform

For Use with Real-Time Workshop®

tic6000.book Page 1 Monday, February 6, 2006 10:39 AM

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information
508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Embedded Target for TI TMS320C6000 DSP Platform User’s Guide
© COPYRIGHT 2002–2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are
registered trademarks of The MathWorks, Inc. Other product or brand names are trademarks
or registered trademarks of their respective holders.

Patents
The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

tic6000.book Page 2 Monday, February 6, 2006 10:39 AM

Revision History

July 2002 Online only Revised for Version 1.0 (Release 13)
January 2003 Online only Revised for Version 1.1
September 2003 Online only Revised for Version 2.0 (Release 13SP1+)
June 2004 Online only Revised for Version 2.1 (Release 14)
August 2004 Online only Revised for Version 2.2
October 2004 Online only Revised for Version 2.2.1 (Release 14SP1)
October 2004 Online only Revised for Version 2.0 (Release 13SP2)
December 2004 Online only Revised for Version 2.3 (Release 14SP1+)
March 2005 Online only Revised for Version 2.3.1 (Release 14SP2)
September 2005 Online only Revised for Version 2.4 (Release 14SP3)
March 2006 Online only Revised for Version 3.0 (Release 2006a)

tic6000.book Page 3 Monday, February 6, 2006 10:39 AM

tic6000.book Page 4 Monday, February 6, 2006 10:39 AM

i

Contents

1
What Is Embedded Target for TI C6000 DSP?

Introducing Embedded Target for the
TI TMS320C6000 DSP Platform . 1-2

Suitable Applications . 1-3

About Embedded Target for C6000 DSP 1-4

Using This Guide . 1-5
Expected Background . 1-5

Configuration Information . 1-7

Getting Started . 1-9
Platform Requirements—Hardware and Operating System . . 1-9

2
Targeting C6000 DSP Hardware

Overview . 2-3
About the Tutorials . 2-3

TI C6000 and Code Composer Studio IDE 2-4
Supported Boards and Simulators . 2-4
Typical Hardware Setup for Developing Models 2-6

Using the C6000lib Blockset . 2-11
Configuring ADC Blocks . 2-21
Configuring DAC Blocks . 2-26
Configuring LED Blocks . 2-29
Using the Overrun Indicator Feature 2-30
Configuring Reset Blocks . 2-31
Configuring Target Preferences Blocks 2-32

tic6000.book Page i Monday, February 6, 2006 10:39 AM

ii Contents

Board Info Pane . 2-36
Memory Pane . 2-38
Sections Pane . 2-42
DSP/BIOS Pane . 2-48
Configuring DM642 EVM Video ADC and Video DAC Blocks 2-51
Creating DSP Application Models for Targeting 2-58
Using Logging in Your DSP Applications 2-58
Generating Code from Real-Time Models 2-59

Schedulers and Timing . 2-61
Timer-Based Versus Asynchronous Interrupt Processing 2-61
Synchronous Scheduling . 2-62
Asynchronous Scheduling . 2-62
Use Cases for Asynchronous Scheduling 2-63
Scheduling Considerations . 2-68

Setting Real-Time Workshop Options for
C6000 Hardware . 2-69

Real-Time Workshop Options for C6000 Hardware 2-69
Real-Time Workshop Pane Options . 2-71
Debug Pane Options . 2-74
Optimization Pane Options . 2-76
TI C6000 Code Generation Pane Options 2-77
TI C6000 Compiler/Linker Options . 2-83
Embedded Target for TI C6000 DSP
Default Project Configuration—custom_MW 2-90

Model Reference and Embedded Target for TI C6000 DSP 2-92
How Model Reference Works . 2-92
Using Model Reference with Embedded Target
 for TI C6000 DSP . 2-93

Targeting Your C6701 EVM and Other Hardware 2-96
Typical Targeting Process . 2-96
Targeting the C6701 Evaluation Module 2-97
Configuring Your C6701 EVM . 2-99
Confirming Your C6701 EVM Installation 2-100
Testing Your C6701 EVM . 2-100
Creating Your Simulink Model for Targeting 2-104

tic6000.book Page ii Monday, February 6, 2006 10:39 AM

iii

C6701 EVM Tutorial 2-1—Single Rate Application 2-108
Specifying Configuration Parameters for Your Model 2-115

C6701 EVM Tutorial 2-2—A Multistage Application 2-119

Targeting Your C6711 DSK and Other Hardware 2-133
Configuring Your C6711 DSK . 2-133
Confirming Your C6711 DSK Installation 2-133
Testing Your C6711 DSK . 2-134
Running Models on Your C6711 DSK 2-138

C6711 DSK Tutorial 2-3—Single Rate Application 2-141
Setting Configuration Parameters for Your Model 2-149

C6711 DSK Tutorial 2-4—A More Complex Application . 2-153

Creating Code Composer Studio Projects
 Without Building . 2-164

Targeting Custom Hardware . 2-166
Typical Targeting Process . 2-168
To Target a Custom C6000 Target . 2-170
Sections Pane . 2-178
To Create Memory Maps for Targets 2-184

Using Embedded Target for TI C6000 DSP with
 Real-Time Workshop Embedded Coder 2-185

3
Targeting with DSP/BIOS Options

Introducing DSP/BIOS . 3-2

DSP/BIOS and Targeting Your TI C6000 DSP 3-3
DSP/BIOS Configuration File . 3-3
Memory Mapping . 3-4

tic6000.book Page iii Monday, February 6, 2006 10:39 AM

iv Contents

Hardware Interrupt Vector Table . 3-4
Linker Command File . 3-5

Code Generation with DSP/BIOS . 3-6
Generated Code Without and With DSP/BIOS 3-6

Profiling Generated Code . 3-10
Profiling Subsystems . 3-10
Profiling Multitasking Systems . 3-11
The Profiling Report . 3-12
Interrupts and Profiling . 3-14
Reading Your Profile Report . 3-14
Definitions of Report Entries . 3-16
Profiling Your Generated Code . 3-17
To Enable Profiling for Your Generated Code 3-18
To Create Atomic Subsystems for Profiling 3-19

Using DSP/BIOS with Your Target Application 3-22
To Enable DSP/BIOS When You Generate Code 3-22

4
Using the C62x and C64x DSP Libraries

About the C62x and C64x DSP Libraries 4-2
Characteristics Common to C62x and C64x Library Blocks . . . 4-3

Fixed-Point Numbers . 4-4
Signed Fixed-Point Numbers . 4-4
Q Format Notation . 4-5

Building Models . 4-8
Converting Data Types . 4-8
Using Sources and Sinks . 4-9
Choosing Blocks to Optimize Code . 4-9

tic6000.book Page iv Monday, February 6, 2006 10:39 AM

v

5
Block Reference

Blocks — By Category . 5-2
Blocks in Target Preferences Library (c6000tgtprefs) 5-2
Blocks in C6701 EVM Library (c6701evmlib) 5-2
Blocks in C6711 DSK Library (c6711dsklib) 5-3
Blocks in RTDX Instrumentation Library (rtdxblocks) 5-4
Blocks in the C62x DSP Library (tic62dsplib) 5-4
Blocks in the C64x DSP Library (tic64dsplib) 5-6
Blocks in the C6416 DSP Library (c6416dsklib) 5-8
Blocks in the C6713 DSP Library (c6713dsplib) 5-9
DSP Blocks in the DM642 EVM Library (dm642evmlib) 5-10
Blocks in the C6000 DSP Core Support
 Library (c6000dspcorelib) . 5-11
Blocks in the Host Communications Library (hostcommlib) . . 5-12
Blocks in the DSP/BIOS Library (dspbioslib) 5-12
Blocks in the TMDX326040A DSP Support
Library (tmdx326040lib) . 5-12

Blocks — Alphabetical List . 5-14

A
Appendix—Supported Hardware and Issues

Supported Hardware for Targeting . A-2

Requirements for the DM642 EVM . A-4
About DM642 EVM Board Revisions . A-4
Setting Up Code Composer Studio for the DM642 EVM A-7
About the XDS560 PCI-Bus JTAG Scan-Based Emulator A-8

Continuing Issues with Embedded Target for
 TI C6000 DSP . A-9

Setting the Clock Speed on the C6713 DSK A-9
Simulink Stop Block Works Differently When
Not Using DSP/BIOS Features . A-10

tic6000.book Page v Monday, February 6, 2006 10:39 AM

vi Contents

Index

tic6000.book Page vi Monday, February 6, 2006 10:39 AM

1
What Is Embedded Target
for TI C6000 DSP?

Introducing Embedded Target for the
TI TMS320C6000 DSP Platform
(p. 1-2)

Introduces the Embedded Target for TI C6000 DSP, some
of the features and supported hardware

About Embedded Target for C6000
DSP (p. 1-4)

Presents an overview of the capabilities of the Embedded
Target for TI C6000 DSP

Using This Guide (p. 1-5) Introduces the organization of the User’s Guide and
provides summaries of each section

Configuration Information (p. 1-7) Describes how to determine if you have installed
Embedded Target for TI C6000 DSP

Getting Started (p. 1-9) Talks about the software and hardware required to use
the Embedded Target for TI C6000 DSP, from both The
MathWorks and from Texas Instruments

tic6000.book Page 1 Monday, February 6, 2006 10:39 AM

1 What Is Embedded Target for TI C6000 DSP?

1-2

Introducing Embedded Target for the TI TMS320C6000 DSP
Platform

Embedded Target for the TI TMS320C6000 DSP Platform integrates
Simulink® and MATLAB® with Texas Instruments eXpressDSP™ tools. The
software collection lets you develop and validate digital signal processing
designs from concept through code. The Embedded Target for TI C6000 DSP
consists of the TI C6000 target that automates rapid prototyping on your
C6000 hardware targets. The target uses C code generated by Real-Time
Workshop® and your TI development tools to build an executable file for your
targeted processor. The Real-Time Workshop build process loads the targeted
machine code to your board and runs the executable file on the digital signal
processor.

Using the Embedded Target for TI C6000 DSP and Real-Time Workshop, you
can create executable code for the following boards:

• C6416 DSP Starter Kit from Texas Instruments

• C6701 Evaluation Module from Texas Instruments, revision 1 or later

• C6711 DSP Starter Kit from Texas Instruments

• C6713 DSP Starter Kit from Texas Instruments

• TMDX326040A Daughter card for the C6711 DSK. Also known as the
PCM3003 Audio Daughter Card.

Additionally, one of the Real-Time Workshop build options builds a Code
Composer Studio™ project from the C code generated by Real-Time Workshop.

All the features provided by Code Composer Studio (CCS), such as tools for
editing, building, debugging, code profiling, and project management, work to
help you develop applications using MATLAB, Simulink, Real-Time Workshop,
and your supported hardware. When you use this target, the build process
creates a new project in Code Composer Studio and populates the project with
the files the project requires.

As long as your TI hardware, whether built by TI or custom, supports
communications over JTAG and RTDX, you can use the Embedded Target for
TI C6000 DSP with your hardware, enabling you to maximize the results of
your development time and effort.

tic6000.book Page 2 Monday, February 6, 2006 10:39 AM

Introducing Embedded Target for the TI TMS320C6000 DSP Platform

1-3

This chapter provides sections that describe the following:

• Some of the digital signal processing applications you can develop with
Embedded Target for TI C6000 DSP, in the section “Suitable Applications”
on page 1-3

• Prerequisites for using Embedded Target for TI C6000 DSP, in the section
“Platform Requirements—Hardware and Operating System” on page 1-9

Suitable Applications
The Embedded Target for TI C6000 DSP enables you to develop digital signal
processing applications that have any of the following characteristics:

• Single rate

• Multirate

• Multistage

• Adaptive

• Frame based

• Fixed point when you use the C62x or C64x blocks with C64xx and C67xx
targets.

Your supported boards, and the Embedded Target for TI C6000 DSP, cover a
range of standard input sampling frequencies from 5.5 KHz to 48 KHz or more.
The specific supported input range depends on the board you own.

For any model to work in the targetting environment, you must select the
discrete-time solver in the Simulink Solver options. Targetting does not work
with continuous time solvers.

tic6000.book Page 3 Monday, February 6, 2006 10:39 AM

1 What Is Embedded Target for TI C6000 DSP?

1-4

About Embedded Target for C6000 DSP
Embedded Target for TI C6000 DSP lets you use Simulink to model digital
signal processing algorithms from blocks in the Signal Processing Blockset,
and then use Real-Time Workshop to generate (or build) ANSI C code targeted
to the Texas Instruments DSP development boards or Texas Instruments Code
Composer Studio™ Integrated Development Environment (CCS IDE). The
Embedded Target for TI C6000 DSP takes the generated C code and uses Texas
Instruments (TI) tools to build specific machine code depending on the TI board
you use. The build process downloads the targeted machine code to the selected
hardware and runs the executable on the digital signal processor. After
downloading the code to the board, your digital signal processing (DSP)
application runs automatically on your target.

tic6000.book Page 4 Monday, February 6, 2006 10:39 AM

Using This Guide

1-5

Using This Guide
This section provides some guidance for using this book to learn more about the
Embedded Target for TI C6000 DSP.

Expected Background
This document introduces you to using Embedded Target for C6000 DSPs with
Real-Time Workshop to develop digital signal processing applications for the
Texas Instruments CC6000 family of DSP development hardware, such as the
TI TMS320C6701 Evaluation Module. To get the most out of this manual, you
should be familiar with MATLAB and its associated programs, such as Signal
Processing Blockset and Simulink. We do not discuss details of digital signal
processor operations and applications, except to introduce concepts related to
using the C6701 EVM or C6711 DSK. For more information about digital
signal processing, you may find one or more of the following books helpful:

• McClellan, J. H., R. W. Schafer, and M. A. Yoder, DSP First: A Multimedia
Approach, Prentice Hall, 1998.

• Lapsley, P., J. Bier, A. Sholam, and E. A. Lee, DSP Processor Fundamentals
Architectures and Features, IEEE Press, 1997.

• Oppenheim, A.V., R. W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989.

• Mitra, S. K., Digital Signal Processing—A Computer-Based Approach, The
McGraw-Hill Companies, Inc, 1998.

• Steiglitz, K, A Digital Signal Processing Primer, Addison-Wesley Publishing
Company, 1996.

For information about Code Composer Studio and Real-Time Data Exchange™
(RTDX™), refer to your Texas Instruments documentation for each product.
Refer to the documentation for your TI boards for information about setting
them up and using them.

If You Are a New User
New users should read Chapter 1, “What Is Embedded Target for TI C6000
DSP?” This introduces the Embedded Target for TI C6000 DSP environment —
the required software and hardware, installation requirements, and the board
configuration settings that you need. You will find descriptions of the blocks
associated with the targeting software, and an introduction to the range of

tic6000.book Page 5 Monday, February 6, 2006 10:39 AM

1 What Is Embedded Target for TI C6000 DSP?

1-6

digital signal processing applications that Embedded Target for C6000 DSPs
supports.

If You Are an Experienced User
All users should read Chapter 2, “Targeting C6000 DSP Hardware” for
information and examples about using the new blocks and build software to
target both your C6701 EVM or your C6711 DSK. Two example models
introduce the targeting software and build files, and give you an idea of the
range of applications supported by Embedded Target for C6000 DSPs. Visit
“Confirming Your C6701 EVM Installation” on page 2-100, to confirm that you
installed and configured your C6701 EVM board to meet the needs of
Embedded Target for C6000 DSPs. For C6711 DSK users, refer to “Configuring
Your C6711 DSK” on page 2-133 for more information about installing and
using your C6711 DSK.

tic6000.book Page 6 Monday, February 6, 2006 10:39 AM

Configuration Information

1-7

Configuration Information
To determine whether the Embedded Target for TI C6000 DSP is installed on
your system, type this command at the MATLAB prompt.

c6000lib

When you enter this command, MATLAB displays the C6000 block library
containing the following libraries that comprise the C6000 library:

• C6000 DSP Core Support

• C62x DSP Library

• C64x DSP Library

• C6416 DSK Board Support

• C6701 EVM Board Support

• C6711 DSK Board Support

• C6713 DSK Board Support

• DM642 EVM Board Support

• DSP/BIOS Library

• Host Communication Library

• RTDX Instrumentation

• Target Preferences

• TMDX326040 Daughtercard Support

If you do not see the listed libraries, or MATLAB does not recognize the
command, install the Embedded Target for TI C6000 DSP. Without the
software, you cannot use Simulink and Real-Time Workshop to develop
applications targeted to the TI boards.

Note For up-to-date information about system requirements, refer to the
system requirements page, available in the products area at the MathWorks
Web site (http://www.mathworks.com).

To verify that CCS is installed on your machine, enter

ccsboardinfo

tic6000.book Page 7 Monday, February 6, 2006 10:39 AM

1 What Is Embedded Target for TI C6000 DSP?

1-8

at the MATLAB command line. With CCS installed and configured, MATLAB
returns information about the boards that CCS recognizes on your machine, in
a form similar to the following listing.

Board Board Proc Processor
Processor

 Num Name Num Name
Type

 --- ---------------------------------- ---

 1 C6xxx Simulator (Texas Instrum ... 0 6701

TMS320C6701
 0 C6x11 DSK (Texas Instruments) 0 CPU

TMS320C6x1x

If MATLAB does not return information about any boards, revisit your CCS
installation and setup in your CCS documentation.

As a final test, launch CCS to ensure that it starts up successfully. For the
Embedded Target for TI C6000 DSP to operate with CCS, the CCS IDE must
be able to run on its own.

tic6000.book Page 8 Monday, February 6, 2006 10:39 AM

Getting Started

1-9

Getting Started
This section describes the hardware and software you need to run the
Embedded Target for TI C6000 DSP on your Microsoft Windows PC.

Embedded Target for TI C6000 DSP runs on Windows 2000, and Windows XP
platforms.

Platform Requirements—Hardware and Operating
System
To run the Embedded Target for TI C6000 DSP, your host PC must meet the
following hardware configuration:

• Intel Pentium or Intel Pentium processor compatible PC

• 64 MB RAM (128 MB recommended)

• 20 MB hard disk space available after installing MATLAB

• Color monitor

• One full-length peripheral component interface (PCI) slot available to use
the C6701 EVM internally in your PC

• CD-ROM drive

• Windows 2000 or Windows XP.

You may need additional hardware, such as signal sources and generators,
microphones, oscilloscopes or signal display systems, and assorted audio cables
to test and evaluate your digital signal processing application on your
hardware.

Refer to your documentation from The MathWorks for more information on
installing the software required to support Embedded Target for TI C6000
DSP, as shown in Table 1-1. In all cases, Embedded Target for TI C6000 DSP
requires that you install the latest versions of the required software.

tic6000.book Page 9 Monday, February 6, 2006 10:39 AM

1 What Is Embedded Target for TI C6000 DSP?

1-10

For information about the software required to use the Link for Code Composer
Studio Development Tools, refer to the Products area of the MathWorks Web
site—http://www.mathworks.com.

Texas Instruments Software
In addition to the required software from The MathWorks, Embedded Target
for TI C6000 DSP requires that you install the Texas Instruments development
tools and software listed in the following table. Installing Code Composer
Studio IDE for the C6000 series, the latest version, installs the software shown.

Table 1-1: Prerequisites for Using Embedded Target for TI C6000 DSP
Software for Targeting

Installed Product Additional Information

MATLAB Core software from The MathWorks

Link for Code
Composer Studio™
Development Tools

Software to enable communications between
MATLAB and the Code Composer Studio
development environment. Required for the
Embedded Target for TI C6000 DSP to work in
code generation and targeting.

Real-Time Workshop Software used to generate C code from Simulink
models

Simulink Software package for modeling, simulating, and
analyzing dynamic systems

Signal Processing
Toolbox

Software package for analyzing signals,
processing signals, and developing algorithms

Signal Processing
Blockset

Block libraries used by Simulink

tic6000.book Page 10 Monday, February 6, 2006 10:39 AM

Getting Started

1-11

.

In addition to the TI software, you need one or more of the following in any
combination:

• One or more Texas Instruments TMS320C6416 DSP Starter Kits

• One or more Texas Instruments TMS320C6701 Evaluation Modules

• One or more TMS320C6711 DSP Starter Kits

• One or more TMS320C6713 DSP Starter Kits

• One or more TMDX326040A Daughter Cards for the C6711 DSK, used with
the DSK. This daughter card is also known as the PCM3003 Audio Daughter
Card

• One or more DM642 Evaluation Modules

• One or more boards from the supported hardware lists

Table 1-2: Required TI Software for Targeting Your TI C6000 Hardware

Installed Product Additional Information

Assembler Creates object code (.obj) for C6000 boards
from assembly code.

Compiler Compiles C code from the blocks in
Simulink models into object code (.obj). As
a byproduct of the compilation process, you
get assembly code (.asm) as well.

Linker Combines various input files, such as object
files and libraries.

Code Composer Studio Texas Instruments integrated development
environment (IDE) that provides code
debugging and development tools.

TI C6000 miscellaneous
utilities

Various tools for developing applications for
the C6000 digital signal processor family.

Code Composer Setup
Utility

Program you use to configure your CCS
installation by selecting your target boards
or simulator.

tic6000.book Page 11 Monday, February 6, 2006 10:39 AM

1 What Is Embedded Target for TI C6000 DSP?

1-12

• One or more configured simulators for any supported digital signal
processors

For up-to-date information about the software from The MathWorks you need
to use the Embedded Target for TI C6000 DSP, refer to the MathWorks Web
site—http://www.mathworks.com. Check the Product area for the Embedded
Target for the TI TMS320C6000 DSP Platform.

tic6000.book Page 12 Monday, February 6, 2006 10:39 AM

2
Targeting C6000 DSP
Hardware

Overview (p. 2-3) Introduces Embedded Target for TI C6000 DSP and the
tutorials in this chapter.

TI C6000 and Code Composer Studio
IDE (p. 2-4)

Discusses the blocks provided by the Embedded Target
for TI C6000 DSP for developing models for TI C6000™
DSP platforms. Also lists the supported hardware.

Using the C6000lib Blockset (p. 2-11) Describes the contents of the C6000lib blockset—what
blocks are included and where, and briefly describes how
to configure the blocks generally.

Schedulers and Timing (p. 2-61) Describes the timer-based and asynchronous schedulers

Setting Real-Time Workshop Options
for C6000 Hardware (p. 2-69)

Provides the details on setting the Real-Time Workshop
options when you generate code from your Simulink
models to TI hardware.

Targeting Your C6701 EVM and Other
Hardware (p. 2-96)

If you are targeting a C6701 EVM, this section details
specific information about using the target.

Model Reference and Embedded Target
for TI C6000 DSP (p. 2-92)

Introduces model reference and how you use model
reference with Embedded Target for TI C6000 DSP

C6701 EVM Tutorial 2-1—Single Rate
Application (p. 2-108)

Takes you through the process of creating models in
Simulink and generating code for your targets. Uses the
6701 EVM as the example board.

C6701 EVM Tutorial 2-2—A
Multistage Application (p. 2-119)

Using a more complex model than the previous tutorial,
this exercise walks you through code generation for a
multistage model.

Targeting Your C6711 DSK and Other
Hardware (p. 2-133)

If you are targeting a C6711 DSK, this section details
specific information about using the target, although the
process shown applies to other targets equally.

tic6000.book Page 1 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-2

C6711 DSK Tutorial 2-3—Single Rate
Application (p. 2-141)

Takes you through the process of creating models in
Simulink and generating code for the C6711 DSK

C6711 DSK Tutorial 2-4—A More
Complex Application (p. 2-153)

Using a more complex model than the previous C6711
DSK tutorial, this exercise walks you through code
generation for a multistage model

Creating Code Composer Studio
Projects Without Building (p. 2-164)

You have the option of generating code into a Code
Composer Studio project, rather than to hardware. This
section introduces the Generate_CCS_project selection
in the Real-Time Workshop build options.

Targeting Custom Hardware (p. 2-166) Discusses how you target processors on boards that are
not supported boards. We call these boards custom
targets.

Using Embedded Target for TI C6000
DSP with Real-Time Workshop
Embedded Coder (p. 2-185)

Provides details about using Embedded Target for TI
C6000 DSP with your Real-Time Workshop Embedded
Coder software and embedded real-time target.

tic6000.book Page 2 Monday, February 6, 2006 10:39 AM

Overview

2-3

Overview
The Embedded Target for the TI TMS320C6000 DSP Platform lets you use
Real-Time Workshop to generate a C language real-time implementation of
your Simulink model. You can compile, link, download, and execute the
generated code on the Texas Instruments (TI) C6701 Evaluation Module
(C6701 EVM) and C6711 DSP Starter Kit (DSK). In combination with the
supported boards (refer to“Supported Hardware for Targeting” on page A-2),
your Embedded Target for TI C6000 DSP software is the ideal resource for
rapid prototyping and developing embedded systems applications for the TI
C6701 and C6711 digital signal processors. The Embedded Target for TI C6000
DSP software focuses on developing real-time digital signal processing (DSP)
applications for C6000 hardware. Additional hardware that we support is
listed in “Appendix—Supported Hardware and Issues” on page A-1.

Although the tutorials in this chapter focus on the C6701 EVM and the C6711
DSK, the techniques and processes apply to any supported hardware, with
minor adjustments for the processor involved.

This chapter describes how to use the Embedded Target for TI C6000 DSP to
create and execute applications on Texas Instruments C6000 development
boards. To use the targeting software, you should be familiar with using
Simulink to create models and with the basic concepts of Real-time Workshop
automatic code generation. To read more about Real-Time Workshop, refer to
your Real-Time Workshop documentation.

About the Tutorials
In most cases, this chapter deals with either the C6701 EVM or the C6711 DSK
targets. Fortunately, all members of the C6000 family of processors that we
support work in a manner similar to the C6701 EVM and C6711 DSK. While
you review the contents of this chapter, and follow the tutorials, recall that the
concepts and techniques or development processes apply, with a few
adjustments, to all supported C6000 processors and boards.

Later sections discuss the Real-Time Workshop embedded coder and targeting
custom hardware.

tic6000.book Page 3 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-4

TI C6000 and Code Composer Studio IDE
Texas Instruments (TI) markets a complete set of software tools to use when
you develop applications for your C6000 hardware boards. This section
provides a brief example of how the Embedded Target for TI C6000 DSP uses
Code Composer Studio™ (CCS) Integrated Development Environment (IDE)
with the Real-Time Workshop and the C6000lib blockset.

Executing code generated from Real-Time Workshop on a particular target in
real time requires that Real-Time Workshop generate target code that is
tailored to the specific hardware target. Target-specific code includes I/O device
drivers and an interrupt service routine (ISR). Since these device drivers and
ISRs are specific to particular hardware targets, you must ensure that the
target-specific components are compatible with the target hardware. To allow
you to build an executable, TI C6000 uses the MATLAB links to invoke the code
building process from within CCS. Once you download your executable to your
target and run it, the code runs wholly on the target; you can access the
running process only from the CCS debugging tools or across a link for CCS or
Real-Time Data Exchange (RTDX). Otherwise the running process is not
accessible.

Used in combination with your Embedded Target for TI C6000 DSP and
Real-Time Workshop, TI products provide an integrated development
environment that, once installed, needs no additional coding.

Supported Boards and Simulators
Using the C6000 target provided by the Embedded Target for TI C6000 DSP,
you can generate code to run on a range of boards, both evaluation modules and
DSP starter kits.

Refer to “Appendix—Supported Hardware and Issues” for the latest
information about the hardware supported by the Embedded Target for TI
C6000 DSP.

About Simulators
CCS offers many simulators for the C6701 and C6711 digital signal processors,
and other C6000 processors in the CCS Setup utility. Much of your model and
algorithm development efforts work with the simulators, such as code
generation. And, since the Embedded Target for TI C6000 DSP provides a
software-based scheduler, your models and generated code run on the

tic6000.book Page 4 Monday, February 6, 2006 10:39 AM

TI C6000 and Code Composer Studio IDE

2-5

simulators just as they do on your hardware. You can use the RTDX links with
the simulators as well. For more information about the simulators in CCS,
refer to your CCS online help system.

When you set up a simulator, match the processor on your target exactly to
simulate your target hardware. To target C6701 EVM boards, your simulator
must contain a C6701 processor, not just a C6xxx simulator. Simulators must
match the target processor because the codecs on the board are not the same
and the simulator needs to identify the correct codec. Correctly matching your
simulator to your hardware ensures that the memory maps and registers
match those of your intended target signal processor.

In general, use the device cycle accurate simulators provided by CCS Setup to
simulate your processor.

Using a Simulator
You can use the simulator alone to develop projects with Embedded Target for
TI C6000 DSP. The simulator can generate and handle timer interrupts
properly to enable your generated code to run.

To use the simulator, you configure the target preferences block in your model
to use the simulator target.

1 Click the target preferences block in your model and select Edit—>Open
Block from the menu bar for your model. This step opens the C6000 Target
Preferences dialog for your target.

2 On the Board info pane in the C6000 Target Preferences dialog, select
Simulator.

3 Click Apply to apply the change, or click OK to apply the new setting and
close the dialog.

There is one manual step to do to use the simulator. After you generate code
from a model to a CCS project, you must modify the project by setting the
RTDX Mode in CCS to Simulator.

In addition, you must substitute the file rtdxsim.lib instead of the default
rtdx.lib library file in the project. Accomplish this project file modification by
navigating to the Include Libraries option in CCS:

Build Options -> Linker -> Basic

tic6000.book Page 5 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-6

and replacing the file as needed in the Include Libraries option.

After you make this file substitution, you cannot use the Line In and Line Out
ADC block options or any other target-specific board-level blocks. You can
substitute any discrete-time sources and sinks from Simulink, Signal
Processing Blockset, or other blockset. When there are no codec blocks (ADC or
DAC blocks) in your model, the Embedded Target for TI C6000 DSP configures
an on-chip timer to trigger the system at the appropriate sample time. As
a result, whatever happens in the model is completely up to you, the user, as
long as you provide the discrete sample time.

Using RTDX with a Simulator
If you are using DSP/BIOS in your project, you configure RTDX by opening the
DSP/BIOS Config properties in the project tree in CCS, opening the project
.cdb file, and navigating to Input/Output. In the Input/Output properties you
set the RTDX mode to Simulator.

If your project is not using DSP/BIOS, you only have to change the RTDX mode
when you are using RTDX blocks in your model. Otherwise, RTDX is not
needed.

Typical Hardware Setup for Developing Models
The next figure presents a block diagram of the typical setup for the inputs and
output for the C6701 EVM. For the C6711 DSK, the typical layout is similar
except the board accepts only monaural input from a microphone.

Block Diagram of Typical Inputs and Outputs to the C6701 EVM

tic6000.book Page 6 Monday, February 6, 2006 10:39 AM

TI C6000 and Code Composer Studio IDE

2-7

After you have installed one or more of the supported development boards
shown in “Appendix—Supported Hardware and Issues” on page A-1, start
MATLAB. At the MATLAB command prompt, type c6000lib. This opens a
Simulink blockset named C6000lib that includes libraries that contain blocks
predefined for C6000 input and output devices:

• C6701 EVM Board Support blocks

- C6701 EVM ADC—configures the analog to digital converter

- C6701 EVM DAC—configures the digital to analog converter

- C6701 EVM DIP Switch—simulates or reads the user-defined DIP
switches on the C6701 EVM

- C6701 EVM LED—controls the user status light emitting diodes (LED) on
the C6701 EVM

- C6701 EVM Reset—resets the current C6701 EVM

• C6711 DSK Board Support blocks

- C6711 DSK ADC—configures the analog to digital converter

- C6711 DSK DAC—configures the digital to analog converter

- C6711 DSK DIP Switch—simulates or reads the user-defined DIP
switches on the C6711 DSK

- C6711 DSK LED—controls the three user status light emitting diodes
(LED) on the C6711 DSK

- C6711 DSK Reset—resets the current C6711 DSK

• RTDX Instrumentation

- From RTDX—adds an RTDX input channel to the code generated from
your model. When you run the model on your target, the block code imports
data from your host over an RTDX channel to your running process.

- To RTDX—adds an RTDX output channel to the code generated from your
model.When you run the model on your target, the block code exports data
to your host over an RTDX channel from your running process.

• C62x DSP Library

- Provides fixed-point blocks for models that use fixed-point mathematics
and algorithms.

• C64x DSP Library

- Provides fixed-point blocks for models that run on C64x processors.

tic6000.book Page 7 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-8

• C6416 DSK Board Support blocks

- C6416 DSK ADC—configures the analog to digital converter

- C6416 DSK DAC—configures the digital to analog converter

- C6416 DSK DIP Switch—simulates or reads the user-defined DIP
switches on the C6701 EVM

- C6416 DSK LED—controls the user status light emitting diodes (LED) on
the C6416 DSK

- C6416 DSK Reset—resets the current C6701 EVM

• C6713 DSK Board Support blocks

- C6713 DSK ADC—configures the analog to digital converter

- C6713 DSK DAC—configures the digital to analog converter

- C6713 DSK DIP Switch—simulates or reads the user-defined DIP
switches on the C6713 EVM

- C6713 DSK LED—controls the user status light emitting diodes (LED) on
the C6713 EVM

- C6713 DSK Reset—resets the current C6713 EVM

• C6000 DSP Core Support blocks

- Blocks that provide data transfer to and from memory on all C6000
hardware—To Memory and From Memory.

• DM642 EVM Board Support blocks

- DM642 EVM Video ADC—configures the analog to digital converter

- DM642 EVM Video DAC—configures the digital to analog converter

- DM642 EVM LED—controls the user status light emitting diodes (LED)
on the DM642 EVM

- DM642 EVM Reset—resets the current DM642 EVM

• DSP/BIOS Library

- HWI—Generate Interrupt Service Routine

- Task—Create task that runs as separate DSP/BIOS thread

- Triggered Task—Create asynchronously triggered task

• Host Communication Library

- Byte Pack—Convert input signals into uint8 vector

- Byte Reversal—Reverse order of bytes in input word

tic6000.book Page 8 Monday, February 6, 2006 10:39 AM

TI C6000 and Code Composer Studio IDE

2-9

- Byte Unpack—Unpack UDP uint8 input vector into Simulink data type
values

- UDP Receive—Receive uint8 vector as UDP message

- UDP Send—Send UDP message to host

• TMDX326040 Daughtercard Support blocks

- Blocks that configure the peripherals associated with the daughtercard.

• Target Preferences blocks

Blocks that allow you to set the target processor for a model and configure
processor specific features, such as memory allocation, target board
selection, and compiler section layout. Every model that you target to
a C6000 processor or board requires one of these blocks. You cannot add
more than one target preferences block to a model. MATLAB returns an
error if you do not include a target preferences block in your C6000 target
model, or you include more than one preferences block.

- C6416DSK—set the model to target a board that uses the C6416 processor

- C6701EVM—set the model to target a board that uses the C6701 processor

- C6711DSK—set the model to target a board that uses the C6711 processor

- C6713DSK—set the model to target a board that uses the C6713 processor

- DM642EVM—set the model to target a board that uses the DM641
processor

- Custom C6000—set the model to target a board that uses any C6000
family processor

These blocks are associated with your boards and hardware. As needed, add
the devices to your model. If you choose not to include either an ADC or DAC
block in your model, Embedded Target for TI C6000 DSP provides a timer that
produces the interrupts required for timing and running your model, either on
your hardware target or on a simulator.

In addition to the blocks for specific boards, the C6000lib blockset includes the
library RTDX Instrumentation that contains RTDX input and output blocks
that apply to all C6000 development boards and the C6000 DSP Core support
library that contain blocks that let you transfer data to and from memory on
any C6000-based target. Like the RTDX blocks, the core support blocks are not
hardware dependent.

tic6000.book Page 9 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-10

With your model open, select Configuration Parameters from the Simulink
option to open the Configuration Parameters dialog box. In the Select tree,
click Real-Time Workshop. You must specify the appropriate versions of the
system target file and template makefile. For the C6701 EVM or the
C6711 DSK, in the Real-Time Workshop pane of the dialog, specify

ti_c6000.tlc

to select the correct target file in Real-Time Workshop system target file.
Or click Browse and select ti_c6000.tlc from the list of targets, or whichever
target best matches your hardware.

With this configuration, you can generate a real-time executable and download
it to the TI development boards. You do this by clicking Build on the
Real-Time Workshop pane. Real-Time Workshop automatically generates
C code and inserts the I/O device drivers as specified by the ADC and DAC
blocks in your block diagram, if any. These device drivers are inserted in the
generated C code as inlined S-functions. Inlined S-functions offer speed
advantages and simplify the generated code. For more information about
inlining S-functions, refer to your target language compiler documentation.
For a complete discussion of S-functions, refer to your documentation about
writing S-functions.

During the same build operation, the template makefile and block parameter
dialog entries get combined to form the target makefile for your TI C6000
board. Your makefile invokes the TI cross-compiler to build an executable file.
If you selected the Build and execute build action, the executable file is
automatically downloaded via the peripheral component interface (PCI) bus to
your C6701 evaluation module, or over the parallel port to your C6711 DSK.
After downloading the executable file to the target, the build process runs the
file on the board’s DSP.

tic6000.book Page 10 Monday, February 6, 2006 10:39 AM

Using the C6000lib Blockset

2-11

Using the C6000lib Blockset
The Embedded Target for TI C6000 DSP block library C6000lib comprises
block libraries that contain blocks designed for targeting specific boards or
using RTDX. The libraries are

• C6701 EVM Board Support—blocks to configure the codec and LEDs on the
C6701 EVM

• C6711 DSK Board Support—blocks to configure the codec and LEDs on the
C6711 DSK

• RTDX Instrumentation—blocks for adding RTDX communications channels
to Simulink models

• TI C62x DSP Library—fixed-point blocks for developing models for
fixed-point targets

• C64x DSP Library—provides fixed-point blocks for models that run on C64x
processors.

• C6416 DSK Board Support—blocks to configure the peripherals on the
C6416 DSK.

• C6713 DSK Board Support—blocks to configure the peripherals on the
C6713 DSK.

• DM642 EVM Board Support—blocks to configure the video peripheral
devices and LEDs on the DM642 EVM

• C6000 DSP Core Support—blocks that provide data transfer to and from
memory on all C6000 hardware.

• Host Communications Library—blocks that support communications
between the host and the target, including byte control and UDP messaging

• DSP/BIOS Library—blocks that provide hardware interrupt
implementation and tasking implementations for models that use the
asynchronous scheduler

• TMDX326040 Daughtercard Support—blocks that configure the peripherals
associated with the daughtercard.

• Target Preferences—icon blocks that allow you to set the target type for
a model. You must include one of these blocks in any model you plan to target
to a C6000 processor or board

tic6000.book Page 11 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-12

Each block library appears in one of the next figures. The sections after the
figures review the configuration options for blocks in the EVM and DSK block
libraries. For more information about the RTDX blocks, refer to “Constructing
Link Objects” in your Link for Code Composer Studio documentation.

Each board-based block library contains a version of each of these blocks:

• ADC block

• DAC block

• DIP Switch block (optional, refer to the reference page for the DIP Switch
block for your target)

• LED block

• Reset block

Similarities in the C6000 boards result in the ADC, DAC, DIP Switch, LED,
and Reset blocks for the C6000-based boards being almost identical. Each
section about a block, such as the ADC block, presents all possible options for
the block, noting when an option applies only to a board-specific version of the
ADC block. For example, the Codec data format option for ADC blocks applies
only to the C6701 EVM ADC.

tic6000.book Page 12 Monday, February 6, 2006 10:39 AM

Using the C6000lib Blockset

2-13

tic6000.book Page 13 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-14

tic6000.book Page 14 Monday, February 6, 2006 10:39 AM

Using the C6000lib Blockset

2-15

tic6000.book Page 15 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-16

tic6000.book Page 16 Monday, February 6, 2006 10:39 AM

Using the C6000lib Blockset

2-17

tic6000.book Page 17 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-18

tic6000.book Page 18 Monday, February 6, 2006 10:39 AM

Using the C6000lib Blockset

2-19

tic6000.book Page 19 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-20

tic6000.book Page 20 Monday, February 6, 2006 10:39 AM

Using the C6000lib Blockset

2-21

Configuring ADC Blocks
To drive and test your DSP application on a C6701 EVM or C6711 DSK, you
use signals from external sources, such as signal generators, audio equipment,
or microphones. In some cases, you may generate your input data in code using
Simulink blocks in your model or from a source block, such as a signal
generator; configuring the ADC block remains the same.

The ADC and DAC blocks provide physical pathways from and to external
sources and displays. They behave like source and sink blocks. They differ from
sources and sinks in that they exchange data with external devices through
analog input and output connectors, not the MATLAB workspace, and they
work only for the C6000 boards.

You add ADC blocks to a model in the same way that you add other Signal
Processing Blockset blocks, or Simulink blocks. You can add at most one ADC
block to a model. When you add C6000 blocks to your Simulink model, you set
parameters that determine how each block handles data.

Adding the ADC block to your Simulink model enables the codec on the target
to accept input from your external source. By connecting your source to the
LINE IN connector on the board mounting bracket, you introduce signals to the
board. Your ADC block defines the signal format the codec uses to sample,
digitize, and send signals to the digital signal processor. When you build your
Simulink model, the build process includes the software to implement the
ADC-defined codec operation into the code downloaded to the board.

Configuring an ADC block includes setting as many as nine parameters on the
Block Parameters dialog.

Choosing and setting these parameters are covered in the following sections.
To help you select the settings, this section provides some guidelines for
common DSP uses and applications for each parameter. While the examples
are not exhaustive, the suggestions may help you select settings that work well
for your application.

Most of the configuration options for the block affect the codec. However, the
Output data type, Samples per frame, and Scaling options relate to the
model you are using in Simulink, the signal processor on the board, or direct

tic6000.book Page 21 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-22

memory access (DMA) on the board. In the following table, you find each option
listed with the target board hardware affected.

Selecting the ADC Source
When you set up your target to accept input for your model, you tell the
hardware where the input to the codec comes from. Selecting Line in and
Mic in on the C6701 EVM corresponds to the two different input connectors on
the board, with different input signal levels expected. On the DSK, the Line in
and Mic in options use the same connector, but generate different signal levels
to the codec. Both boards include the Loopback option that feeds the output
from the DAC back to the ADC input.

Choosing the Sample Rate (C6701 EVM ADC Block Only)
To open the Block Parameters dialog, right-click the C6701 EVM ADC block
in your Simulink model and select Block Parameters from the context menu.
You see the dialog presented in Figure 2-1, Block Parameters for C6701 EVM
ADC Dialog.

Option Affected Hardware

ADC Source Codec

Codec data format (C6701
EVM ADC only)

Codec

Mic Codec

Output data type TMS320C6xxx digital signal processor

Sample rate (Hz) (C6701 EVM
ADC only)

Codec

Samples per frame Direct memory access functions

Scaling TMS320C6xxx digital signal processor

Source gain (dB) Codec

Stereo (C6701 EVM ADC only) Codec

tic6000.book Page 22 Monday, February 6, 2006 10:39 AM

Using the C6000lib Blockset

2-23

Figure 2-1: Block Parameters for C6701 EVM ADC Dialog

Select your sample rate from the list. 5521 Hz is the lowest rate and 48000 Hz
is the highest. You cannot set a sample rate that is not on the list. The available
rates are derived from the clocks on the codec and cannot be changed.

The C6711 DSK uses a fixed sample rate of 8 KHz.

For many applications, your sample rate should reflect the standards for the
industry. For example, if you are developing a professional audio application,
working with digital audio tape (DAT) processes, or developing applications for
high fidelity audio use, consider using 48000 Hz sampling rate in your model.
In addition, choose double-precision, fixed-point arithmetic format when you
select the Codec data format.

tic6000.book Page 23 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-24

For applications used by CD players and sound cards in personal computers,
the standard sampling rate is 44.1 KHz, and some of the lower rates such as
22.05 or 16 KHz. Moving Picture Expert Group (MPEG) audio applications
often select a 32 KHz sampling rate.

When you are developing an application for speech, telephony, or “toll quality”
speech processing, the 8 KHz sampling rate, paired with one of the 8-bit data
formats that use a compressed format such as A-law, best matches current
standards.

Choosing the Codec Data Format (C6701 EVM ADC Only)
When the codec performs A/D conversion, the output data format is partly
determined by the setting for Codec data format in the Block Parameters
dialog. Codec data format offers five choices:

• 16-bit linear—the standard method of representing 16-bit digital audio.
Provides 96 dB theoretical dynamic range and best fits the standard for
compact disk audio players. -32768 represents the maximum negative
analog amplitude and 32767 represents the maximum positive analog
amplitude.

• 8-bit linear—commonly used in the PC industry. Provides 48 dB theoretical
dynamic range. 00 represents the maximum negative analog amplitude and
255 represents the maximum positive analog amplitude.

• 8-bit A law—used in the telephone industry most frequently. A-law is the
European standard; μ-law is the standard in Japan and the United States.
Uses a nonlinear companding transfer function to digitize analog input to
provide 64 dB or 72 dB maximum dynamic range.

• 8-bit μ law—used in the telephone industry most frequently. μ-law is the
standard in Japan and the United States; A-law is the European standard.
Uses a nonlinear companding transfer function to digitize analog input to
provide 64 or 72 dB maximum dynamic range.

• 4-bit IMA ADPCM—voice digitization scheme that uses a lower bit rate than
pulse code modulation (PCM). ADPCM records only the difference between
samples, and adjusts the coding scale dynamically to accommodate large and
small differences. This scheme is simple to implement, but can introduce
significant noise. The G.721 method uses 32Kbps per voice channel, as
compared to standard telephony's 64Kbps using PCM. Using ADPCM

tic6000.book Page 24 Monday, February 6, 2006 10:39 AM

Using the C6000lib Blockset

2-25

instead of PCM is imperceptible to humans—but it can significantly reduce
the throughput required by higher-speed modems and fax transmissions.

You will probably use 16-bit linear codec data format when you begin
developing your model. If you do not care about, or do not expect, negative data
values, as would be the case where you are measuring a voltage that varies
from 0 volts to 5 volts, you could use 8-bit unsigned math. If appropriate for
your application, choose one of the compression data formats for your model.

Selecting the Data Type
You must select the data type when you include the ADC block in your DSP
simulation. The data type you use in the simulation is likely not to be the one
you use when you build and download the application to the target. Your choice
of data type depends on a number of factors related to how the application runs
on the target DSP and what limitations apply. Four factors can influence your
choice:

• Processing time—how long does each iteration of your process take? Can the
DSP process the data quickly enough to meet your needs?

• Power used—how much power does the application require? Doing lots of
multiply and divide operations uses more power and generates more heat
than add operations.

• Memory required—how does your application use memory and how much
does it need?

• Does accuracy matter—do you need the accuracy provided by
double-precision arithmetic or is fixed-point or integer acceptable?

When you have developed and tested your signal processing application in
Simulink, you are ready to use Real-Time Workshop and your Embedded
Target for TI C6000 DSP to build and download your model to the C6701 EVM
or C6711 DSK. Your Simulink model should represent a general purpose
implementation of your application, without specific features that depend on
the target DSP. For instance, use floating-point arithmetic and single- or
double-precision format to develop your simulation. Select DSP target-specific
data and format requirements when you prepare your model for the board.

tic6000.book Page 25 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-26

Note If you use fixed-point arithmetic in your processing algorithm or
application on the C6701 EVM or C6711 DSK, verify that the blocks in your
Simulink model will work with the processor in integer mode.

Blocks in the C62 DSPLIB library are designed specifically for fixed-point
models.

To ease model development on the target, start by selecting floating-point data
format when you build and download your application to the board. You could
choose either single-precision or double-precision at this time to ensure that
your model runs on the target processor. Often, normalized floating-point
arithmetic is the best choice during development. As you tune your model for
your target processor, consider whether such factors such as calculation time
and memory use are important in your application environment. If time is a
critical parameter, use either less precise math, such as single precision
instead of double, or switch from floating point to fixed point or integer. Making
these changes both speeds up your process and reduces the memory and power
your processor consumes to complete its calculations.

For accuracy without regards to time, use floating-point arithmetic.

Selecting the Scaling
Both the single-precision and double-precision data types are available as
floating point or normalized values. During development, it is a good idea to
start with normalized values to relieve you from worrying about overflows and
underflows in the calculations performed in the algorithm. When you are
happy that the process is under control, change the data type to the one you
need for the deployed executable code.

Selecting a floating-point data type can reduce your algorithm processing
overhead slightly.

Configuring DAC Blocks
In most cases, DAC blocks inherit attributes from the ADC block in the model,
or from the previous nonvirtual block. You must select Codec data format,
Scaling, and Overflow mode when you use a C6701 EVM DAC block in your

tic6000.book Page 26 Monday, February 6, 2006 10:39 AM

Using the C6000lib Blockset

2-27

model. In addition, you can choose to use the overrun indicator function
provided in the Embedded Target for TI C6000 DSP.

Two of the configuration options for the block affect the codec. The remaining
options relate to the model you are using in Simulink and the signal processor
on the board. In the following table, you find each option listed with the
hardware affected.

When you double-click the C6701 EVM DAC block, you see the dialog shown
here.

Option Affected Hardware

Codec data format
(C6701 EVM DAC only)

Codec

DAC attenuation Codec

Overflow mode Digital Signal Processor

Scaling Digital Signal Processor

tic6000.book Page 27 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-28

Choosing the Codec Data Format (C6701 EVM DAC Block Only)
The Codec data format for the C6701 EVM DAC block must be the same as
the Codec data format for the C6701 EVM ADC block, if you use one in your
model. C6711 DSK codec blocks do not offer the Codec Data Format option.

Selecting the Scaling
Select the scaling that best suits your model and your output device. For most
applications, choose the scaling to match the setting of the ADC block if your
model uses it.

Scaling defines the range of the input values from the codec. Independent of
your setting for Scaling, signal values are stored as floating-point data. In
Normalize mode, the signal ranges from -1 to 1 at the output of the ADC block.
When you select Integer value for the scaling, the signal ranges between the
minimum and maximum values representable by the number of bits specified
by Codec data format.

Selecting the Overflow Mode
Models running on the target can encounter situations where calculations
exceed the range represented by the data type. The Overflow mode option on
the DAC dialog lets you select how the block responds to overflow conditions.
Select one of the following settings:

• Saturate—arithmetic results that fall outside the representable range of the
selected data type are limited to the largest or smallest values. Saturated
values are set to the nearest value that the data type can represent, either
the largest representable value in the case of arithmetic overflow or the
smallest representable value in the case of arithmetic underflow.

Before input data reaches the codec, the Embedded Target for TI C6000 DSP
uses an efficient linear assembly algorithm to determine whether the input
values exceed the representable range of your selected data type. When input
values exceed the range of the data type, the saturation algorithm clips the
input to the nearest representable value and passes the clipped, or saturated,
value to the codec.

• Wrap—arithmetic results that fall outside the numeric range of the selected
data type are wrapped into the range of the data type. The wrapping
algorithm uses modular arithmetic relative to the largest or smallest
representable number to determine the value of the result after wrapping.

tic6000.book Page 28 Monday, February 6, 2006 10:39 AM

Using the C6000lib Blockset

2-29

Configuring LED Blocks
You use the LEDs on the evaluation module as indicators for your process. For
example, you might use an LED to indicate that your algorithm has completed
a specified calculation or reached a particular point in the processing.

To use an LED as an indicator, add an LED block to your model, and send a
nonzero signal to the block to light the specified LED—either internal or
external. Any nonzero scalar sent to the LED block lights the LED and keeps
it lit until the block receives a scalar with zero value. The zero value scalar
turns off the selected LED.

Since the C6701 EVM provides two LEDs, you can use two C6701 EVM LED
blocks—one for each user status LED on the board. Although the C6711 DSK
offers three user-defined LEDs, the C6711 DSK LED block treats all three as
one LED, enabling them as a group. For this reason you can include only one
C6711 DSK LED block in a model.

Select the Target LED (C6701 EVM LED Block Only)
Double-clicking the C6701 EVM LED block opens the dialog shown here.

When you add an C6701 EVM LED block to your model, you use the LED list
to select which LED the block controls—internal or external. Select External
from the list to have the C6701 EVM LED block trigger the LED located on the
C6701 EVM mounting bracket at the back of your PC. To trigger the internal
LED located on the C6701 EVM board internally, select Internal for the LED
setting.

tic6000.book Page 29 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-30

Using the Overrun Indicator Feature
When your digital signal process application cannot complete the calculations
and data manipulations required to yield a result before the available clock
cycles expire, your model can generate unreliable data. Failing to complete an
algorithm is called overrunning, and is one of the most important errors to
identify and eliminate in digital signal processing design and implementation.

The Embedded Target for TI C6000 DSP provides a pair of overrun indicator
options—Overrun action and Overrun notification method—that you use to
determine what happens when your application overruns and how or if to
notify you when your process runs out of processing time before it completes its
tasks. To signal that your algorithm has overrun its limits, the Embedded
Target for TI C6000 DSP can turn on the external LED on your C6701 EVM
and leave it on until you reset the evaluation module. The overrun feature can
also print a message that the overrun occurred to the standard output device—
stdout (or the message log if your application uses DSP/BIOS). One more
option lets you both light the LED and print a message.

Limitations on the Overrun Indicator
In two cases, the overrun indicator does not work:

• In multirate systems where the rate in the process is not the same as the
base clock rate for your model. In this case, the timer/scheduler in the
Embedded Target for TI C6000 DSP provides the interrupts for setting the
model rate and you cannot use the overrun indicator.

• In models that do not include ADC or DAC blocks. In this case, the
timer/scheduler provides the software interrupts that drive model
processing.

To detect overrun conditions, the generated C code sets and checks a persistent
flag during each iteration of the direct memory access (DMA) interrupt service
routine.

To indicate an overrun condition on the C6711 DSK, the software turns on all
three user-defined LEDs on the board.

tic6000.book Page 30 Monday, February 6, 2006 10:39 AM

Using the C6000lib Blockset

2-31

Note The Overrun notification method selections that turn on the LEDs
use the external LED or user-defined LEDs to signal model conditions. If you
are using the overrun indicator, consider not using an LED block to trigger the
external LED on the C6701 EVM, or the user LEDs on the C6711 DSK until
you stop monitoring your process for overrun conditions.

To enable the overrun indicator, choose one of three options for Overrun
action to determine how to respond to an overrun condition in your model:

• None—your model does not respond to overrun conditions during processing.

• Notify_and_continue—when your model runs out of clock cycles before
completing enough of the processing algorithm, the overrun indicator
executes the option you chose for Overrun notification method. The model
continues to run without pause.

• Notify_and_halt—when your algorithm runs out of clock cycles before
completing the required calculations and manipulations, the model stops
executing and notifies you about the overrun using the method you select for
the Overrun notification method.

Overrun notification method provides three ways to tell you when an overrun
has occurred:

• Print_message—print a message to stdout, or the message log when your
application uses DSP/BIOS

• Turn_on_LEDs—illuminate the user LEDs on the target, either the external
LED on the C6701 EVM or all the user LEDs on the C6711 DSK

• Print_message_and_turn_on_LEDs— light the LEDs and print a message

Configuring Reset Blocks
Each target library offers a block that performs a software reset of the
appropriate board—a Reset block. While they are blocks, Resets do not require
input; they do not provide output; and they do not need to be connected to any
other block.

When you add a Reset block to a model window, it provides single-click access
to resetting your board. Click on the block in your model and your target

tic6000.book Page 31 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-32

processor returns to its original state, with the memory locations, registers,
and other peripherals reset to their default values before you loaded or ran
a program.

Configuring Target Preferences Blocks
One block is required in all C6000 targets models—a block from the Target
Preferences library in the C6000 Block (c6000lib) library. Adding one of these
blocks to your model provides direct access from the model to the C6000 Target
Preferences dialog where you choose your target board and processor, define
your target board memory map, and set data and code sections, such as
compiler, DSP/BIOS, and user sections.

To target a model to a C6000 processor based target, add one of the following
target preferences blocks to the model. The blocks with specific board names
represent blocks that are preconfigured with default values to match the

tic6000.book Page 32 Monday, February 6, 2006 10:39 AM

Using the C6000lib Blockset

2-33

attributes of the named Texas Instruments DSP starter kits and evaluation
modules:

Target Preferences Block Description

Custom C6000 Provides access to the hardware set up for
targeting any C6000 processor-based board.
Note that it does not set any default values.
When you add this block to a model, you must
set all the options on each available pane—
board information, memory mapping, and
section layout.

C6416DSK Sets default values for targeting the C6416
DSK. After you add this block to your model,
you can modify the default values as you
require. Parameters in this block are set to
match the board attributes.

C6701EVM Sets default values for targeting the C6701
EVM. After you add this block to your model,
you can modify the default values as you
require. Parameters in this block are set to
match the board attributes.

C6711DSK Sets default values for targeting the C6711
DSK. After you add this block to your model,
you can modify the default values as you
require. Parameters in this block are set to
match the board attributes.

tic6000.book Page 33 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-34

Note Every model that you target to a C6000 processor-based board must
include one target preferences block. An error is reported if you do not include
the target preferences block or include more than one.

If the target preferences block in your model indicates a target name which
does not exist in CCS Setup, Embedded Target for TI C6000 DSP places the
new project into the CCS IDE window for board 0 as defined in the CCS Setup
Utility. When you have more than one target configured for CCS, such as
boards 0 and 1, this default behavior may not put the project in the target you
intend. Warning messages such as

File does not match the target type.

may indicate that the project is in the wrong, or an unintended, target location.

Double-clicking one of the above blocks in a model opens the C6000 Target
Preferences dialog, shown here in the custom board configuration.

C6713DSK Sets default values for targeting the C6713
DSK. After you add this block to your model,
you can modify the default values as you
require. Parameters in this block are set to
match the board attributes.

DM642EVM Sets default values for targeting the DM642
EVM. After you add this block to your model,
you can modify the default values as you
require. Parameters in this block are set to
match the board attributes.

Target Preferences Block Description

tic6000.book Page 34 Monday, February 6, 2006 10:39 AM

Using the C6000lib Blockset

2-35

All target preferences block dialogs provide tabbed access to panes that include
options you set for the target processor and target board:

• Board info—select the target processor and board, set the clock speed, and
identify the target.

• Memory—set the physical memory layout on the target processor and board.

• Sections—determine the allocation of the code and data sections in the
target memory such as where to put the DSP/BIOS and compiler sections.

tic6000.book Page 35 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-36

Board Info Pane
The following options appear on the Board Info pane for the C6000 Target
Preferences dialog.

Board Type
Lets you enter the type of board you are targeting with the model. You can
enter Custom to support any board based on one of the supported processors, or
enter the name of one of the supported boards, such as C6711DSK. If you are
using one of the explicitly supported boards, choose the target preferences
block for that board and this field shows the proper board type.

Device
Lets you select the type of processor on the board you select in CCS board
name. The processor type you enter determines the contents and setting for
options on the Memory and Sections panes in this dialog. If you are targeting
one of the supported boards, Device is disabled and the selected device is fixed.

CPU Clock Speed (MHz)
Shows the clock speed of the processor on your target. When you enter a value,
you are not changing the CPU clock rate, you are reporting the actual rate. If
the value you enter does not match the rate on the target, your model real-time
results may be wrong, and code profiling results will not be correct.

You must enter the actual clock rate the board uses. The rate you enter here
does not change the rate on the board. Setting CPU clock speed to the actual
board rate allows the code you generate to run correctly according to the actual
clock rate of the hardware.

When you generate code for C6000 targets from Simulink models, you may
encounter the software timer. If your model does not include ADC or DAC
blocks, or when the processing rates in your model change (the model is
multirate), you automatically invoke the timer to handle and create interrupts
to drive your model.

Correctly generating interrupts for your model depends on the clock rate of the
CPU on your target. While the default clock rate is 100 MHz on the C6701
EVM, you can change the rate with the DIP switches on the board or from one
of the software utilities provided by TI. C6711 DSK hardware uses a fixed clock
rate of 150 MHz; you can not change the clock rate. Other C6000 processors
allow different clock speeds.

tic6000.book Page 36 Monday, February 6, 2006 10:39 AM

Using the C6000lib Blockset

2-37

For the timer software to calculate the interrupts correctly, Embedded Target
for TI C6000 DSP needs to know the actual clock rate of your target processor
as you configured it. CPU clock speed lets you tell the timer the rate at which
your target CPU runs. You are telling the software timer what rate to use to
match the CPU rate.

The timer uses the CPU clock rate you specify in CPU clock speed to calculate
the time for each interrupt. For example, if your model includes a sine wave
generator block running at 1 KHz feeding a signal into an FIR filter block, the
timer needs to create interrupts to generate the sine wave samples at the
proper rate. Using the clock rate you choose, 100 MHz for example, the timer
calculates the sine generator interrupt period as follows for the sine block:

• Sine block rate = 1 KHz, or 0.001 s/sample

• CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires

• 100000000/1000 = 1 Sine block interrupt per 1000000 clock ticks

So you must report the correct clock rate or the interrupts come at the wrong
times and the results are incorrect.

Simulator
Select this option when you are targeting a simulator rather than a hardware
target. You must select Simulator to target your code to a C6000 simulator.

Enable High-Speed RTDX
Select this option to tell the code generation process to enable high-speed
RTDX for this model.

CCS Board Name
Contains a list of all the boards defined in CCS Setup. From the list of available
boards, select the one that you are targeting your code for.

CCS Processor Name
Lists the processors on the board you selected for targeting in CCS board
name. In most cases, only one name appears because the board has one
processor. In the multiprocessor case, you select the processor by name from
the list.

tic6000.book Page 37 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-38

Memory Pane
When you target any board, you need to specify the layout of the physical
memory on your processor and board to determine how use it for your program.
For supported boards, the board-specific target preferences blocks set the
default memory map.

The Memory pane contains memory options in three areas:

• Physical Memory—specifies the processor and board memory map

• Heap—specifies whether you use a heap and determines the size in words

tic6000.book Page 38 Monday, February 6, 2006 10:39 AM

Using the C6000lib Blockset

2-39

• L2 Cache—enables the L2 cache (where available) and sets the size in kB

Be aware that these options may affect the options on the Sections pane. You
can make selections here that change how you configure options on the
Sections pane.

Most of the information about memory segments and memory allocation is
available from the online help system for Code Composer Studio.

Physical Memory Options
This list shows the physical memory segments available on the board and
processor. By default, target preferences blocks show the memory segments
found on the selected processor. In addition, the Memory pane on
preconfigured target preferences blocks shows the memory segments available
on the board, but off of the processor. Target preferences blocks set default
starting addresses, lengths, and contents of the default memory segments.

The default memory segments for each processor and board are different. For
example:

• Custom boards based on C670x processors provide IPRAM and IDRAM
memory segments by default.

• C6701 EVM boards provide IPRAM, IDRAM, SBSRAM, SDDRAM0, and
SDRAM1 memory segments by default

• C6711DSK boards provide SDRAM memory segment by default

Name
When you highlight an entry on the Physical memory list, the name of the
entry appears here. To change the name of the existing memory segment, select
it in the Physical memory list and then type the new name here.

Note You cannot change the names of default processor memory segments.

To add a new physical memory segment to the list, click Add, replace the
temporary label in Name with the one to use, and press Return. Your new
segment appears on the list.

tic6000.book Page 39 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-40

After you add the segment, you can configure the starting address, length, and
contents for the new segment. New segments start with code and data as the
type of content that can be stored in the segment (refer to the Contents option).

Names are case sensitive. NewSegment is not the same as newsegment or
newSegment.

Address
Address reports the starting address for the memory segment showing in
Name. Address entries are in hexadecimal format and limited only by the
board or processor memory.

When you are using a processor-specific preferences block, the starting address
shown is the default value. You can change the starting value by entering the
new value directly in Address when you select the memory segment to change.

Length
From the starting address, Length sets the length of the memory allocated to
the segment in Name. As in all memory entries, specify the length in
hexadecimal format, in minimum addressable data units (MADUs). For the
C6000 processor family, the MADU is 8 bytes, one word.

When you are using a processor-specific preferences block, the length shown is
the default value. You can change the value by entering the new value directly
in this option.

Contents
Contents details the kind of program sections that you can store in the memory
segment in Name. As the processor type for the target preferences block
changes, the kinds of information you store in listed memory segments may
change. Generally, the Contents list contains these strings:

• Code—allow code to be stored in the memory segment in Name.

• Data—allow data to be stored in the memory segment in Name.

• Code and Data—allow code and data to be stored in the memory segment in
Name. When you add a new memory segment, this is the default setting for
the contents of the new element.

You may add or use as many segments of each type as you need, within the
limits of the memory on your processor.

tic6000.book Page 40 Monday, February 6, 2006 10:39 AM

Using the C6000lib Blockset

2-41

Add
Click Add to add a new memory segment to the target memory map. When you
click Add, a new segment name appears, for example NEWMEM1, in Name and on
the Physical memory list. In Name, change the temporary name NEWMEM1 by
entering the new segment name. Entering the new name, or clicking Apply
updates the temporary name on the list to the name you enter.

Remove
This option lets you remove a memory segment from the memory map. Select
the segment to remove on the Physical memory list and click Remove to
delete the segment.

Create Heap
If your processor supports using a heap, as do the C6711 or C6701, for example,
selecting this option enables creating the heap, and enables the Heap size
option. Create heap is not available on processors that either do not provide
a heap or do not allow you to configure the heap.

Using this option you can create a heap in any memory segment on the
Physical memory list. Select the memory segment on the list and then select
Create heap to create a heap in the select segment. After you create the heap,
use the Heap size and Define label options to configure the heap.

The location of the heap in the memory segment is not under your control. The
only way to control the location of the heap in a segment is to make the segment
and the heap the same size. Otherwise, the compiler determines the location of
the heap in the segment.

Heap Size
After you select Create heap, this option lets you specify the size of the heap
in words. Enter the number of words in decimal format. When you enter the
heap size in decimal words, the system converts the decimal value to
hexadecimal format. You can enter the value directly in hexadecimal format as
well. Processors may support different maximum heap sizes.

Define Label
Selecting Create heap enables this option that allows you to name the heap.
Enter your label for the heap in the Heap label option.

tic6000.book Page 41 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-42

Heap Label
Enabled by selecting Define label, you use this option to provide the label for
the heap. Any combination of characters is accepted for the label, except
reserved characters in C/C++ compilers.

Enable L2 Cache
C621x, C671x, and C641x processors support an L2 cache memory structure
that you can configure as SRAM and partial cache. Both the data memory and
the program share this second-level memory. C620x DSPs do not support L2
cache memory and this option is not available when you choose one of the
C620x processors as your target.

If your processor supports the two-level memory scheme, this option enables
the L2 cache on the processor.

L2 Cache size
Once you enable the L2 cache, use this list to determine the size of the cache
allotted. Select the size of the cache from the list.

Sections Pane
Options on this pane let you specify where various program sections should go
in memory. Program sections are distinct from memory segments—sections
are portions of the executable code stored in contiguous memory locations.
Among the sections used generally are .text, .bss, .data, and .stack. Some
sections relate to the compiler, some to DSP/BIOS, and some can be custom
sections as you require.

For more information about program sections and objects, refer to the CCS
online help. Most of the definitions and descriptions in this section come from
CCS.

tic6000.book Page 42 Monday, February 6, 2006 10:39 AM

Using the C6000lib Blockset

2-43

Within this pane, you configure the allocation of sections for Compiler,
DSP/BIOS, and Custom needs.

tic6000.book Page 43 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-44

Here are brief definitions of the various kinds of sections in the lists. All
sections do not appear on both lists. The list on which the string appears is
shown in the table.

String Section List Description of the Section Contents

.args DSP/BIOS Argument buffers.

.bss Compiler Static and global C variables in the code.

.bios DSP/BIOS DSP/BIOS code if you are using DSP/BIOS
options in your program.

.cinit Compiler Tables for initializing global and static
variables and constants.

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier and
string constants.

.data Compiler Program data for execution.

.far Compiler Variables, both static and global, defined as
far variables.

.gblinit DSP/BIOS The load allocation of the DSP/BIOS
startup initialization tables section.

.hwi DSP/BIOS Dispatch code for interrupt service
routines.

.hwi_vec DSP/BIOS Interrupt Service Table.

.obj DSP/BIOS Configuration properties that the target
program can read.

.pinit Compiler Load allocation of the table of global object
constructors section.

.rtdx_text DSP/BIOS Code sections for the RTDX program
modules.

tic6000.book Page 44 Monday, February 6, 2006 10:39 AM

Using the C6000lib Blockset

2-45

You can learn more about memory sections and objects in your Code Composer
Studio online help. Most of the definitions and descriptions in this section come
from the online help for CCS.

Compiler Sections
During program compilation, the C6000 compiler produces both uninitialized
and initialized blocks of data and code. These blocks get allocated into memory
as required by the configuration of your system. On the Compiler sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections. The initialized
sections are:

• .cinit
• .const
• .switch

• .text—created by the assembler.

These sections are uninitialized:

• .bss—created by the assembler.

.stack Compiler The global stack.

.switch Compiler Jump tables for switch statements in the
executable code.

.sysdata DSP/BIOS Data about DSP/BIOS.

.sysinit DSP/BIOS DSP/BIOS initialization startup code.

.sysmem Compiler Dynamically allocated object in the code.
Contains the heap.

.text Compiler Load allocation for the literal strings,
executable code, and compiler generated
constants.

.trcdata DSP/BIOS TRC mask variable and its initial value
section load allocation.

String Section List Description of the Section Contents

tic6000.book Page 45 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-46

• .far
• .stack
• .sysmem

Other sections appear on the list as well:

• .data—created by the assembler. The C/C++ compiler does not use this
section.

• .cio
• .pinit

When you highlight a section on the list, Description shows a brief description
of the section. Also, Placement shows you where the section is presently
allocated in memory.

Description
Provides a brief explanation of the contents of the selected entry on the
Compiler sections list.

Placement
Shows you where the selected Compiler sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments as defined in
the physical memory map on the Memory pane. Select one of the listed memory
segments to allocate the highlighted compiler section to the segment.

DSP/BIOS Sections
During program compilation, DSP/BIOS produces both uninitialized and
initialized blocks of data and code. These blocks get allocated into memory as
required by the configuration of your system. On the DSP/BIOS sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections.

Description
Provides a brief explanation of the contents of the selected DSP/BIOS sections
list entry

tic6000.book Page 46 Monday, February 6, 2006 10:39 AM

Using the C6000lib Blockset

2-47

Placement
Shows where the selected DSP/BIOS sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments available on
C6000 processors, and changes based on the processor you are using.

DSP/BIOS Object Placement
Distinct from the entries on the DSP/BIOS sections list, DSP/BIOS objects like
STS or LOG, if your project uses them, get placed in the memory segment you
select from the DSP/BIOS Object Placement list. All DSP/BIOS objects use
the same memory segment. You cannot select the location for individual
objects.

Custom Sections
When your program uses code or data sections that are not included in either
the Compiler sections or DSP/BIOS sections lists, you add the new sections
to this list. Initially, the Custom sections list contains no fixed entries, just a
placeholder for a section for you to define.

Name
You enter the name for your new section here. To add a new section, click Add.
Then replace the temporary name with the name to use. Although the
temporary name includes a period at the beginning you do not need to include
the period in your new name. Names are case sensitive. NewSection is not the
same as newsection, or newSection.

Placement
With your new section added to the Name list, select the memory segment to
which to add your new section. Within the restrictions imposed by the
hardware and compiler, you can select any segment that appears on the list.

Add
Clicking Add lets you configure a new entry to the list of custom sections. When
you click Add, the block provides a new temporary name in Name. Enter the
new section name to add the section to the Custom sections list. After typing
the new name, click Apply to add the new section to the list. Or click OK to add
the section to the list and close the dialog.

tic6000.book Page 47 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-48

Remove
To remove a section from the Custom sections list, select the section to remove
and click Remove. The selected section disappears from the list.

DSP/BIOS Pane
Options on this pane let you specify how to configure tasking features of
DSP/BIOS.

This pane provides options the asynchronous task scheduler uses when you
select the Incorporate DSP/BIOS option in the configuration set for your
model. By default, Incorporate DSP/BIOS is selected and the Embedded
Target for TI C6000 DSP creates separate DSP/BIOS tasks for each sample
time in your Simulink model.

DSP/BIOS tasking blocks provide parameters on their block dialogs so you can
specify the DSP/BIOS stack size and stack segment (where the stack is in
memory) for asynchronous tasks created by the DSP/BIOS Task and Triggered
Task blocks.

The code generation process uses the options on this pane to configure TSK
entries in the TSK Task Manager in CCS when it creates DSP/BIOS tasks.

When you choose not to use DSP/BIOS in your project, by clearing the
Incorporate DSP/BIOS the configuration set for your model, you disable the
options in this pane and Embedded Target for TI C6000 DSP uses an
interrupt-based scheduler. It does not create or use DSP/BIOS tasks.

For more information about tasks, refer to the Code Composer Studio online
help. Most of the definitions and descriptions in this section come from CCS.

tic6000.book Page 48 Monday, February 6, 2006 10:39 AM

Using the C6000lib Blockset

2-49

Within this pane, you configure the options for DSP/BIOS tasks, such as the
task manager and scheduler configuration. Note that the Sections pane
includes DSP/BIOS configuration options as well. The options specify the stack
use and locations on the stack for static and dynamic tasks.

Default stack size (bytes)
DSP/BIOS uses a stack to save and restore variables and CPU context
during thread preemption for task threads. This option sets the size of the
DSP/BIOS stack in bytes allocated for each task. 4096 bytes is the default
value. You can set any size up to the limits for the processor. Set the stack

tic6000.book Page 49 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-50

size so that tasks do not use more memory than you allocate. While any
task can use more memory than the stack includes, this might cause the
task to write into other memory or data areas, possibly causing
unpredictable behavior.

Stack segment for static tasks
Use this option to specify where to allocate the stack for static tasks. Static
tasks are created whether or not they are needed for operation, compared
to dynamic tasks that the system creates as needed. Tasks that your
program uses often might be good candidates for static tasks. Infrequently
used tasks usually work best as dynamic tasks.

The list offers options SDRAM and ISRAM for locating the stack in memory,
with SDRAM as the default section. The Memory pane provide more options
for the physical memory on the processor.

Stack segment for dynamic tasks
Like static tasks, dynamic tasks use a stack as well. Setting this option
specifies where to locate the stack for dynamic tasks. In this case, SDRAM is
the only valid stack location in memory.

Code Generation For Subsystems
Generating code for most models is a matter of adding the target preference
block to your model, configuring the target options, and then generating code
with Real-Time Workshop.

When you generate code for a subsystem in a model, as opposed to generating
code for the entire model, you must treat the target preferences block
differently. Real-Time Workshop lets you choose to generate code or build
executables for entire model or for subsystems of the models. For more about
this feature, refer to “Generating Code and Executables from Subsystems” in
your Real-Time Workshop documentation in the online Help system.

With the Embedded Target for TI C6000 DSP, you must do one thing before you
generate code or build an executable from a subsystem—you must add the
target preferences block to the subsystem.

To generate code for a subsystem

1 Set the top model simulation parameters for the model as you always do,
such as selecting the target, the make file, the solver, and more.

tic6000.book Page 50 Monday, February 6, 2006 10:39 AM

Using the C6000lib Blockset

2-51

2 Put a target preferences block for your target in the subsystem from which
you want to generate code.

3 Configure the target preferences block options as required.

4 Right-click on the subsystem and select Real-Time Workshop->Build
Subsystem from the context menu.

The Build Subsystem window opens, displaying a list of the subsystem
parameters. The upper pane displays the name, class, and storage class of
each variable or data object that is referenced as a block parameter in the
subsystem. When you select a parameter in the upper pane, the lower pane
shows the blocks that reference the parameter and the parent system of each
block.

5 After selecting parameters and making adjustments as needed, click Build
to start the code generation and build process.

Note Putting the target preferences block in the subsystem disables
automatic model parameter setting. You do not see a confirmation dialog
about the build process when you generate code for the subsystem.

Configuring DM642 EVM Video ADC and Video DAC
Blocks
Preparing the Video ADC and Video DAC blocks for the DM642 EVM is quite
different from configuring the ADC and DAC blocks for the other supported
hardware. Rather than being just analog-to-digital converters, or
digital-to-analog, the DM642 EVM blocks allow you to capture and display
video data. While conversion is a part of what they do, the configuration
process sets up the video formats that the video ADC (capture) block accepts
and the video DAC (output) block provides for display.

Configuring the Video ADC or Video Capture Block
To capture video from the video inputs on your DM642 EVM, add the DM642
EVM Video ADC block to capture the video input. Options in the block let you
set the output format and output mode of video that leaves the block for

tic6000.book Page 51 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-52

processing in your model. Setting the options configures the peripherals on
your board, and the SAA7115 or TVP5146/5150 video decoders to capture and
reformat video for output from the block for further processing.

From the available options in the dialog, you see that you do not need to
configure the block for the type of video input. The block accepts whatever
supported video you provide at the video input ports. Options in the dialog let
you specify how to output the video from the block to downstream model
elements and which video decoder you DM642 EVM uses.

Option Affected Hardware

Decoder type Video decoder, either SAA7115 or
TVP5146/5150

Input port Video decoder

tic6000.book Page 52 Monday, February 6, 2006 10:39 AM

Using the C6000lib Blockset

2-53

Setting the Decoder type
Your selection from the list configures the block options to support either the
TVP5146 Decoder on the DM642 EVM or the SAA7115 Decoder, depending on
the model of your board. Choose one option from the list—TVP5146 or SAA7115.
When you select SAA7115 for the type of decoder, the dialog adds an option—
Output Mode. Generally, older DM642 EVM boards use the SAA7115 decoder
option. Newer boards use the default setting TVP5146 decoder. Refer to
“Identifying Your DM642 EVM Board Revision” on page A-4 for information
about identifying the revision of your DM642 EVM.

Choosing the Input port
Directs the block to capture video from either the 0 or 1 video input port on the
DM642 EVM based on whether you select 0 or 1. The block does not support
port 2 for video input.

Selecting the Output Mode (SAA7115 Decoder only)
In the Video ADC dialog, the option Output mode, available when Decoder
type is SAA7115, sets the size of the frames the block outputs in pixels and
lines, and the frame rate. It also determines how the data frames get
assembled into images. Choosing a mode from the list tells the video decoder to
take the input video stream and convert it to the mode/size you select. Mode

Output mode SAA7115H video decoders (available when you
set Decoder type to SAA7115)

Output format SAA7115H video decoders

Sample time Clock rate and decoders

Data order Buffers and decoder

Option Affected Hardware

tic6000.book Page 53 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-54

selection supports the following video standards, shown in the Output mode
list.

Setting the Output format
Choose one of the following color representations according to what your model
and algorithm require.

Output Mode Description

NTSC 720x480 525 horizontal lines stacked on top of each
other, with varying numbers of lines making
up the horizontal resolution. There are 59.94
fields displayed per second. Each field is a set
of even lines, or odd lines. Displaying the
even and odd fields sequentially by
interlacing them creates each full 60 field
frame. One full frame is displayed about
every 1/30 of a second (30 Hz refresh rate).

NTSC 640x480 Scales the output to standard (SDTV) mode.

Digital Output Format Description

RGB24 Output uses 8 bits each of red, green, and blue
colors to represent the color of each pixel in
the image. RGB color space is
device-dependent.

YCbCr Output from the block includes one luminance
channel Y (essentially the black/white signal)
and two chrominance (color) channels Cb and
Cr to represent the color image data per pixel.
This is the digital standard color space DVDs
use.

Y Black/White video. No color/chromaticity
values.

tic6000.book Page 54 Monday, February 6, 2006 10:39 AM

Using the C6000lib Blockset

2-55

Your selection determines how the block represents color data in the output.

Sample time
Sample time tells the block how often to take frames from the video decoder
and buffers. While NTSC video runs at 30 frames/s (1/30 s sample time), you
can sample at any rate below or above the TV rate. Remember that sampling
times that are not 1/30th of a second may either capture incomplete frames,
when Sample time < frame time, or miss frames/fields when
Sample time > frame time.

Note that

• The sample time you specify becomes the DM642 timer period that drives the
execution of your model.

• Your generated application is not synchronized with the input video signal—
the application always runs on the processor timer.

Data order
With data order, you control the way the video decoder stores and outputs video
data fields and frames of images. Choose one of these options from the list.

• Row major—store video data in row major order. This is the default setting
and matches most video data.

• Column major—store video data in column major order. Simulink® and
MATLAB both use this format to store images and matrices.

DM642 EVM Video ADC blocks store the image data in row major format
because most video capture devices use a scanning order of left-to-right and
top-to-bottom, favoring the rows.

MATLAB and Simulink use column major ordering to store image and matrix
data. Therefore, some of the Simulink blocks may not work correctly or as
expected with the DM642 EVM Video ADC blocks.

Configuring the Video DAC or Video Output Block
To provide video output from your running process on your target, add the
Video DAC block to your model. Options for the block let you determine the
video format for the output and center the image in the display.

tic6000.book Page 55 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-56

You see from the options that the block provides parameters that control the
video encoder on the DM642 EVM.

Selecting the Mode
Unlike the DM642 EVM Video ADC block, this DAC block does not convert the
video between formats. Nor does this block inherit any settings from the
DM642 EVM Video ADC block, as some of the other C6000 DAC blocks do.

The Mode option specifies both the video format the block accepts and the
format the block outputs to the video output ports on the EVM.

Option Affected Hardware

Mode SAA7105 video encoder

Data order SAA7105 video encoder

Center image SAA7105 video encoder

tic6000.book Page 56 Monday, February 6, 2006 10:39 AM

Using the C6000lib Blockset

2-57

To be able to be displayed, images that you send to the block should be equal to
or smaller than your target display size. If the input images are smaller than
the target display size, the block pads the image by adding zeros to the image.

Data order
With data order, you control the way the video decoder stores and outputs video
data fields and frames of images. Choose one of these options from the list.

• Row major—store video data in row major order. This is the default setting
and matches most video data.

• Column major—store video data in column major order. Simulink and
MATLAB both use this format to store images and matrices.

DM642 EVM Video DAC blocks store the image data in row major format
because most video display devices use a scanning order of left-to-right and
top-to-bottom, favoring the rows.

MATLAB and Simulink use column major ordering to store image and matrix
data. Therefore, some of the Simulink blocks may not work correctly or as
expected with the DM642 EVM Video DAC blocks.

Selecting the Center image option instructs the block to center the output
image on the display. Note that centering the image requires some
computation by the processor so there are small time and CPU cycles penalties
for choosing this option. For that reason, Center image is cleared by default.

Analog Output Mode Description

NTSC 720x480 YCbCr Analog output of video data in 720-by-480
pixels format with full color

NTSC 640x480 Y Analog video output in 640-by-480 pixels
format with black and white only (luminance).
No color data.

SVGA 800x600 RGB24 Full super VGA format 800-by-600 pixels with
three color channels: 8-bit red, 8-bit green,
and 8-bit blue data.

tic6000.book Page 57 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-58

Another note of interest—some cameras pad their video output with zeros to
ensure that the display does not cut off the image on one side, usually the left.
Images that include such padding may appear to be off-center on the display.
In fact, while the displayed image may not appear centered, the electronic
image (the data that compose the displayed image plus the padding which you
can not see) is centered in the display area.

Creating DSP Application Models for Targeting
Create your real-time model for your application the way you create any other
Simulink model—by using standard blocks and C-MEX S-functions. Select
blocks to build your model from any of the following sources:

• Use the ADC, DAC, and LED blocks from libraries in the C6000lib block
library to handle input and output functions for your target hardware

• Use blocks from the TI C62x DSP library in the C6000lib block library to
build fixed-point models

• Use blocks provided with the Real-Time Workshop

• Use blocks from the Signal Processing Blockset

• Use discrete time blocks from Simulink

• Use blocks from any other blockset that meet your needs and operate in the
discrete time domain

• Add a target preferences block from the Target Preferences library
(c6000tgtpreflib) to configure your generated code for your target
processor

Using Logging in Your DSP Applications
Simulink offers various data logging capabilities in the Configuration
Parameters dialog for your model. Found on the Data Import/Export pane of
the Configuration Parameters dialog, the implicit logging options let you
specify how and when Simulink logs model operations and gets data from your
workspace.

When your model is running on the target, it cannot communicate directly with
MATLAB. Configuration options that tell your model to send or retrieve data
from your MATLAB workspace do not work and use processing time to no
benefit.

tic6000.book Page 58 Monday, February 6, 2006 10:39 AM

Using the C6000lib Blockset

2-59

To avoid these effects, do not enable options on the Data Import/Export pane
in the Configuration Parameters dialog in your model.

To Turn Off Logging in Your Model
Follow this procedure to disable the logging options in your existing Simulink
model:

1 Select Simulation->Configuration Parameters from the menu bar in your
model.

2 Click Data Import/Export in the Select tree to access the
Data Import/Export pane.

3 Clear the options in the Load from workspace and Save to workspace
fields.

- Input
- Initial state
- Time
- States
- Output
- Final states

Instead of using the Data Import/Export options in Configuration
Parameters to eliminate logging during code generation and operation, run

dspstartup

from your MATLAB command prompt before you create new Simulink models.
Running dspstartup disables the Data Import/Export options in the
Configuration Parameters dialog for your new models.

Generating Code from Real-Time Models
This section summarizes how to generate code from your real-time model. For
details about generating code from models in Real-Time Workshop, refer to
your Real-Time Workshop documentation.

You start the automatic code generation process from the Simulink model
window by clicking Build in the Real-Time Workshop pane of the
Configuration Parameters dialog. The code building process consists of these
tasks:

tic6000.book Page 59 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-60

1 Real-Time Workshop invokes the function make_rtw to start the Real-Time
Workshop build procedure for a block diagram. make_rtw invokes the Target
Language Compiler to generate the code and then invokes the language
specific make procedure.

2 gmake builds file modelname.out. Depending on the build options you select
in the Configuration Parameters dialog, gmake can download and execute
the model on your TI target board.

tic6000.book Page 60 Monday, February 6, 2006 10:39 AM

Schedulers and Timing

2-61

Schedulers and Timing
The next sections describe how the Embedded Target for TI C6000 DSP
provides timing and scheduling for generated code running on your target.

Timer-Based Versus Asynchronous Interrupt
Processing
Code generated for periodic tasks, both single and multitasking) runs out of the
context of a timer interrupt. The generated code that represents model blocks
for periodic tasks runs periodically, clocked by the periodic interrupt whose
period is equal to the base sample time of the model.

This execution scheduling scheme is not flexible enough for systems, such as
many control and communication systems, that must respond to asynchronous
events in real time. Such systems may need to handle a variety of hardware
interrupts in an asynchronous, or aperiodic, fashion.

When you plan your project or algorithm, select your scheduling technique
based on your application needs.

• If your application processes hardware interrupts asynchronously, add the
appropriate asynchronous scheduling blocks from the Embedded Target for
TI C6000 DSP library to your model, listed here.

Blocks in the DSP/BIOS Library
- HWI—Create interrupt service routine on C6000 hardware target

- Task—Create task that runs as separate DSP/BIOS thread

- Triggered Task—Create asynchronously triggered task

Blocks in the C6000 DSP Core Support Library
- Hardware Interrupt—Generate interrupt service routine. Same as the

DSP/BIOS interrupt block

- CPU timer—Generate interrupt service routine

- Idle Task—Create free-running background task

• If your application does not service asynchronous interrupts, your model
should include only the algorithm and device driver blocks that specify the
periodic sample times. Generating code from a model like this automatically
enables and manages a timer interrupt. The periodic timer interrupt clocks
the entire model.

tic6000.book Page 61 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-62

Note The preceding description of scheduling and timing applies both to
generated code operation that incorporates DSP/BIOS real-time operating
system (RTOS) and bare-board code generation mode where DSP/BIOS RTOS
is not included.

Synchronous Scheduling
For code that runs synchronously in the context of the timer interrupt, each
iteration of the model runs after an interrupt has been posted and serviced by
an interrupt service routine (ISR). The code generated for Embedded Target for
TI C6000 DSP uses Timer 1 in DSP/BIOS mode and bare-board mode. Timer 1
is configured so that the base rate sample time for the coded process
corresponds to the interrupt rate. The Embedded Target for TI C6000 DSP
calculates and configures the timer period to ensure the desired sample rate.

The minimum achievable base rate sample time depends on the algorithm
complexity and the CPU clock speed. The maximum value depends on the
maximum timer period value and the CPU clock speed.

If all the blocks in the model inherit their sample time value, and no sample
time is defined explicitly, Simulink assigns a default sample time of 0.2 s.

Asynchronous Scheduling
Embedded Target for TI C6000 DSP facilitates modeling and automatically
generating code for asynchronous systems by using the following scheduling
blocks:

• Hardware Interrupt and Idle Task blocks for bare-board code generation
mode

• Hardware Interrupt, Task, and Triggered Task blocks for DSP/BIOS code
generation mode

Hardware Interrupt block enables selected hardware interrupts for the TI
TMS320C6000 DSP, generates corresponding ISRs, and connects them to the
corresponding interrupt service vector table entries.

tic6000.book Page 62 Monday, February 6, 2006 10:39 AM

Schedulers and Timing

2-63

When you connect the output of the Hardware Interrupt block to the control
input of a function-call subsystem, the generated subsystem code is called from
the ISRs each time the interrupt is raised.

The Idle Task block specifies one or more functions to execute as background
tasks in the code generated for the model. The functions are created from the
function-call subsystems to which the Idle Task block is connected.

The Hardware Interrupt block (in DSP/BIOS code generation mode) has the
same functionality as the bare-board Hardware Interrupt block. The
configuration and low-level handling of the hardware interrupts is
implemented through DSP/BIOS using HWI module and DSP/BIOS
dispatcher.

Task blocks (DSP/BIOS code generation mode) spawn free-running tasks as
separate DSP/BIOS threads. The spawned task runs the function-call
subsystem connected to its output. Blocks in the subsystem may use various
conditions and techniques to control sharing sources with other tasks.

Triggered Task blocks (in DSP/BIOS code generation mode) spawn
semaphore-controlled tasks as separate DSP/BIOS threads. The semaphore
that enables execution of a single instance of the task is posted by an ISR that
is created by a Hardware Interrupt block connected to a Triggered Task block.

Use Cases for Asynchronous Scheduling
The following sections present common use cases for the scheduling blocks
described in the previous sections.

Free-Running DSP/BIOS Task
The following model illustrates a use case where a reverberation algorithm
runs in the context of a free-running DSP/BIOS task.

tic6000.book Page 63 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-64

Normally, the algorithms in this type of task run in free-running mode. That
is, they run repetitively and indefinitely. However, in this function-call
subsystem (shown below in detail) ADC and DAC blocks suspend the execution
of the task until the ADC and DAC data is available.

Each instance of the reverberation algorithm is triggered only after the data
buffer is available (for both ADC and DAC). An asynchronous ADC/DAC device
driver layer separate from the task function manages the triggers condition.
This device driver layer uses a direct memory access (DMA) interrupt to signal
to the DSP/BIOS task when ADC and DAC data become available for the task
function.

The model also illustrates using synchronous and asynchronous tasks
together. The code generated for C6416 DSK DIP Switch block runs as
a periodic task at the rate of 0.01 s. This is the only periodic task in the model.

DSP/BIOS

TSK

Task

C6416 DSK
DIP Switch

function()

In1

Reverberation
Algorithm

Rate Transition

Stage 1 Stage 2 Stage 3 Stage 4

z
−173

z
−300

z
−237

z
−641

z
−41

single(0.8)

Feedback Gain1

−K−

Delay Mix1 C6416 DSK
DAC

Mic In
C6416 DSK

ADC

SW0

SW1

SW2

SW3

 1

f()

function 1

In1

tic6000.book Page 64 Monday, February 6, 2006 10:39 AM

Schedulers and Timing

2-65

It runs out of the context of a DSP/BIOS task scheduled via a timer interrupt
configured to go off every 0.01s.

In general, Simulink blocks that specify non-zero sample rates, such as the DIP
Switch block, are scheduled by the TIC6000 synchronous scheduler and
executed either from the context of a DSP/BIOS task (if you incorporate
DSP/BIOS in your project) or a hardware interrupt (when you do not
incorporate DSP/BIOS).

To ensure data integrity, Simulink Rate Transition blocks connect the C6416
DSK DIP Switch block with the reverberation algorithm, since they belong to
different rate groups. If the synchronous and asynchronous parts of the model
did not interact (they do here), the Rate Transition blocks would not be
necessary.

Idle Task
The following model illustrates a case where the reverberation algorithm runs
in the context of a background task in bare-board code generation mode.

The function generated for this task normally runs in free-running mode—
repetitively and indefinitely. However, the ADC and DAC blocks in this
subsystem run in blocking mode. As a result, subsystem execution of the
reverberation function is the same as the subsystem described earlier for
Free-Running DSP/BIOS Task. It is data-driven via a background DMA
interrupt-controlled ISR.

function()

Reverberation
Algorithm

Idle Task

f()

Idle Task

tic6000.book Page 65 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-66

Hardware Interrupt Triggered DSP/BIOS Task
The next model illustrates a case where a function (Location Command) runs
in the context of a hardware interrupt-triggered DSP/BIOS task.

The Hardware Interrupt block installs an ISR function which signals
a DSP/BIOS task to run when the ISR detects an RTDX interrupt. Signaling
between the ISR and DSP/BIOS task I occurs via semaphores. This task
receives an RTDX message carrying the location command for the downstream
Text Insert block in the Text Overlay from the host computer .

The blocks running inside the Location Command and Text Overlay
subsystems are shown below.

The text overlay subsystem is executed as described earlier for the case of
Free-Running DSP/BIOS Task. A Rate Transition block connects the two
subsystems that run at two different asynchronous rates to ensure data

z
−2400

Integer Delay

0.8

Feedback Gain

.9

Delay Mix

C6416 DSK
DAC

DAC

Mic In
C6416 DSK

ADC

ADC

f()

function

DSP/BIOS

TSK

Video task

DSP/BIOS

TSK

Triggered Task

function()

In1

Text OverlayRate Transition

function()

Out1

Location Command

DSP/BIOS

HWI

Hardware Interrupt

tic6000.book Page 66 Monday, February 6, 2006 10:39 AM

Schedulers and Timing

2-67

integrity. The execution of two asynchronous rates is ordered based on the
priority settings for the Task blocks.

Hardware Interrupt Triggered Task
In the next figure, you see a case where a function (LED control) runs in the
context of a hardware interrupt triggered task.

In the model, the Hardware Interrupt block installs a task that runs when it
detects an external interrupt. This task then toggles an external C6416DSK
LED on or off.

Location Command Subsystem

1

Out1

From RTDX
ichan1

From RTDX

f()

function

Text Overlay Subsystem

DM642EVM

Video DAC

Y

Cb

Cr

Video Display

DM642EVM

Video ADC

Y

Cb

Cr

Video Capture

’Text’
IIIIII

Location

I
III

Insert Text

f()

function

1

In1

YPtr_port0

CbPtr_port0

CrPtr_port0

function()

LED Control

IRQNN

C6000

Hardware Interrupt

Hardware Interrupt

tic6000.book Page 67 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-68

Scheduling Considerations
When using DSP/BIOS task blocks for scheduling care must be taken to avoid
some common scheduling pitfalls. First of all, DSP/BIOS operating system
always executes the task with the highest priority. This is in contrast to some
other RTOS where each task gets its fair share of processing time. Therefore,
depending on the situation there may be cases where lower priority tasks never
get to execute because a higher priority task never blocks. A DSP/BIOS task
blocks only when a blocking device driver block is included in the function call
subsystem the task is executing (ADC/DAC blocks, UDP Receive block, etc.). If
a particular DSP/BIOS task executes a function call subsystem which does not
include any device driver blocks and this particular task has the highest
priority it will never release the CPU effectively disabling all other lower
priority tasks in the application.

For more information about asynchronous schedulers, refer to the section on
Asynchronous Support in your Real-Time Workshop documentation in the
online Help system.

lim

On/Off
Toggle

C6416 DSK
LED

LED

f()

function

tic6000.book Page 68 Monday, February 6, 2006 10:39 AM

Setting Real-Time Workshop Options for C6000 Hardware

2-69

Setting Real-Time Workshop Options for
C6000 Hardware

Before you generate code with the Real-Time Workshop, set the fixed-step
solver step size and specify an appropriate fixed-step solver if the model
contains any continuous-time states. At this time, you should also select an
appropriate sample rate for your system. Refer to your Real-Time Workshop
documentation for additional information.

Note Embedded Target for TI C6000 does not support continuous states in
Simulink models for code generation. In the Solver options in the
Configuration Parameters dialog, you must select discrete (no
continuous states) as the Type, along with Fixed step.

Real-Time Workshop Options for C6000 Hardware
The Real-Time Workshop pane of the Configuration Parameters dialog lets
you set numerous options for the real-time model. To open the Configuration
Parameters dialog, select Simulation -> Configuration Parameters from the
menu bar in your model. The following figure shows the Real-Time Workshop
categories when you are using the Embedded Target for TI C6000 DSP.

tic6000.book Page 69 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-70

In the Select tree, the categories provide access to the options you use to
control how Real-Time Workshop builds and runs your model. The first
categories under Real-Time Workshop in the tree apply to all Real-Time
Workshop targets including the target and always appear on the list.

The last categories under Real-Time Workshop are specific to the Embedded
Target for TI C6000 DSP target ti_C6000.tlc and appear when you select any
TI C6000 target.

• TI C6000 code generation—target-specific code generation options

• TI C6000 compiler/linker—target-specific compiler and linker options.
Also includes the target-specific run-time options.

tic6000.book Page 70 Monday, February 6, 2006 10:39 AM

Setting Real-Time Workshop Options for C6000 Hardware

2-71

When you select your target in Target Selection on the Real-Time
Workshop pane, the options change in the tree. For the Embedded Target for
TI C6000 DSP, the target to select is ti_c6000.tlc. Selecting either the
ti_c6000.tlc or ti_c6000_ert.tlc adds the TI C6000-specific options to the
Select tree.

The following sections present each Real-Time Workshop category and the
options available in each.

Real-Time Workshop Pane Options
Use the options in the Select tree under Real-Time Workshop to perform the
following configuration tasks.

• Determine your target, either C6000 or some other target if you are not using
the Embedded Target for TI C6000 DSP.

• Select your documentation needs.

• Configure your build process.

• Specify whether to use custom storage classes.

When you select the appropriate C6000 target (ti_c6000.tlc) in System
target file, you enable the automatic board selection for your model. After that,
opening the Configuration Parameters dialog for your model triggers the
automatic board and processor selection tool, which searches for your

tic6000.book Page 71 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-72

C6701 EVM. If MATLAB and CCS cannot find a board that matches the
C6701 EVM designation, you see an error message dialog.

Target selection
System target file. Clicking Browse opens the Target File Browser where you
select ti_c6000.tlc as your Real-Time Workshop System target file for the
Embedded Target for TI C6000 DSP. When you select your target
configuration, Real-Time Workshop chooses the appropriate system target file,
template makefile, and make command. You can also enter the target
configuration filename, and Real-Time Workshop will fill in the Template
makefile and Make command selections.

tic6000.book Page 72 Monday, February 6, 2006 10:39 AM

Setting Real-Time Workshop Options for C6000 Hardware

2-73

If you are using the Real-Time Workshop Embedded Coder software, select the
ti_c6000_ert.tlc target here.

Documentation
Generate HTML report. After you generate code, this option tells the software
whether to generate an HTML report that documents the C code generated
from your model. When you select this option, Real-Time Workshop writes the
code generation report files in the html subdirectory of the build directory. The
top-level HTML report file is named modelname_codegen_rpt.html or
subsystemname_codegen_rpt.html. For more information about the report,
refer to the online help for Real-Time Workshop. Or try

docsearch 'Generate HTML report'

at the MATLAB prompt.

When you select Include hyperlinks to model, your HTML report adds
hyperlinks to various features in your Simulink model. Hyperlinks within the
displayed report let you view the blocks or subsystems that generated the
report. Click the hyperlinks to view the relevant blocks or subsystems in your
Simulink model.

Launch report after code generation completes. Automatically opens a
MATLAB Web browser window and displays the code generation report. When
you clear this option, you can open the code generation report
(modelname_codegen_rpt.html or subsystemname_codegen_rpt.html)
manually in a MATLAB Web browser window, or in another Web browser
manually.

Build Process
Template makefile. Real-Time Workshop uses template makefiles to generate
the makefile for building the executable file. During the automatic build
process, MATLAB issues the make_rtw command. make_rtw extracts
information from the template makefile ti_c6000.tmf and creates the actual
makefile c6000.mk. When Real-Time Workshop compiles the model, it uses the
actual makefile to generate the compiled code for the target.

Set the Template makefile option to ti_c6000.tmf when you build your
application for the C6000 target. If the template makefile shown in the option
is not ti_c6000.tmf, click Browse to open the list of available system target

tic6000.book Page 73 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-74

files and select the correct file from the list. Real-Time Workshop then selects
the appropriate template makefile.

Make command. When you generate code from your digital signal processing
application, use the standard command make_rtw as the Make command. In
the Build process area in the Target configuration category, enter make_rtw
for the Make command. Parameters you set in this dialog belong to the model
you are building. They are saved with the model and stored in the model file.

Custom storage class
When you generate code from a model employing custom storage classes (CSC),
make sure to clear Ignore custom storage classes. This is the default for the
Embedded Target for TI C6000 DSP and for Real-Time Workshop Embedded
Coder.

When you select Ignore custom storage classes,

• Objects with CSCs are treated as if you set their storage class attribute to
Auto.

• The storage class of signals that have CSCs does not appear on the signal
line, even when you select Storage class from Format -> Port/Signals
Display in your Simulink menus.

Ignore custom storage classes lets you switch to a target that does not
support CSCs, such as the generic real-time target (GRT), without having to
reconfigure your parameter and signal objects.

Generate code only. This option does not apply to targeting with the
Embedded Target for TI C6000 DSP. To generate source code without building
and executing the code on your target, select TI C6000 runtime from the
Category list in the Select tree. Then, under Runtime, select Generate code
only for Build action. You cannot use DSP/BIOS features when you use the
Generate code only option for the Build action.

Debug Pane Options
Real-Time Workshop uses the Target Language Compiler (TLC) to generate C
code from the model.rtw file. The TLC debugger helps you identify
programming errors in your TLC code. Using the debugger, you can

tic6000.book Page 74 Monday, February 6, 2006 10:39 AM

Setting Real-Time Workshop Options for C6000 Hardware

2-75

• View the TLC call stack.

• Execute TLC code line-by-line and analyze and/or change variables in a
specified block scope.

When you select Debug from the Select tree, you see the Debug options as shown
in the next figure. Within this, you set options that are specific to Real-Time
Workshop process and TLC debugging.

For details about using the options in Debug, refer to the section “About TLC
Debugger” in your Real-Time Workshop documentation.

tic6000.book Page 75 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-76

Optimization Pane Options
On the Optimization pane in the Configuration Parameters dialog, you set
options for the code that Real-Time Workshop generates during the build
process. You use these options to tailor the generated code to your needs. Select
Optimization from the Select tree on the Configuration Parameters dialog.
The figure shows the Optimization pane when you select the system target file
ti_C6000.tlc under Real-Time Workshop system target file.

These are the options typically selected for Real-Time Workshop:

• Conditional input branch execution
• Signal storage reuse
• Enable local block outputs
• Reuse block outputs

tic6000.book Page 76 Monday, February 6, 2006 10:39 AM

Setting Real-Time Workshop Options for C6000 Hardware

2-77

• Eliminate superfluous temporary variables (Expression folding)
• Loop unrolling threshold
• Optimize initialization code for model reference
For more information about using these and the other Optimization options,
refer to your Real-Time Workshop documentation.

TI C6000 Code Generation Pane Options
On the select tree, the TIC6000 Code Generation entry provides options in
these areas:

• Target Selection—export a handle to your MATLAB workspace
• Code Generation—configure your code generation requirements, such as

enabling DSP/BIOS

• Runtime—set options for run-time operations, like the build action

Target Selection
When you use Real-Time Workshop to build a model to a C6000 target,
Embedded Target for TI C6000 DSP makes a link between MATLAB and CCS.
If you have used the link portion of the Embedded Target for TI C6000 DSP,
you are familiar with function ccsdsp, which creates links between the IDE
and MATLAB. This option refers to the same link, called cc in the function
reference pages. Although MATLAB to CCS is a link, what it really is a handle
to an object that contains information about the object, such as the target board
and processor it accesses. In this pane, the Export handle to MATLAB base
workspace option lets you instruct the Embedded Target for TI C6000 DSP to
export the link to your MATLAB workspace, giving it the name you assign in
CCS handle name.

Code Generation
From this category, you choose from options that define the way your code is
generated:

• Incorporate DSP/BIOS
• Profile performance at atomic subsystem boundaries
• Inline Signal Processing Blockset functions

• Use target-specific optimization for speed (allow LSB differences)

tic6000.book Page 77 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-78

Incorporate DSP/BIOS determines whether the build process incorporates
DSP/BIOS features in your generated code. When you select Incorporate
DSP/BIOS, the build process inserts the DSP/BIOS options and files (the .cmd
file that contains DSP/BIOS configuration information) in the generated code.
The resulting code includes instrumentation based on DSP/BIOS objects.
“Introducing DSP/BIOS” on page 3-2 provides details about the changes that
occur in your generated code when you include DSP/BIOS.

If you are using the Generate code only build action option, you cannot use
DSP/BIOS features in your generated code—do not select the Incorporate
DSP/BIOS option here.

For profiling your generated code, the code generation options include the
Profile performance at atomic subsystem boundaries option. When your
model includes atomic subsystems, you can select this option to have
Embedded Target for TI C6000 DSP generate a run-time report about the way
your generated code performs when you run the code on your target. For more
information about using code profiling, refer to “Profiling Generated Code” on
page 3-10.

To allow you to specify whether the functions generated from blocks in your
model are used inline or by pointers, Inline Signal Processing Blockset
functions tells the compiler to inline each Signal Processing Blockset function.
Inlining functions can make your code run more efficiently (better optimized)
at the expense of using more memory. As shown in the figure, the default
setting uses inlining to optimize your generated code.

tic6000.book Page 78 Monday, February 6, 2006 10:39 AM

Setting Real-Time Workshop Options for C6000 Hardware

2-79

When you inline a block function, the compiler replaces each call to a block
function with the equivalent function code from the static run-time library. If
your model use the same block four times, your generated code contains four
copies of the function. While this redundancy uses more memory, inline
functions run more quickly than calls to the functions outside the generated
code.

The final option in this category is Use target-specific optimization for speed
(allow LSB differences), which determines whether Embedded Target for TI
C6000 DSP attempts to optimize the code generated from your model to make
it run more quickly on your selected target. This option might not make any
difference in some models.

tic6000.book Page 79 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-80

Notice that selecting target-specific optimization allows your generated code to
differ from your simulation results in the least significant bit (LSB) for the
outputs of optimized blocks. You should review the results of the optimized and
simulation-true code to see that they are sufficiently close for your needs. For
many models, the LSB differences do not matter. Clearing this option results
in generated code whose results match your model simulation results.

The preferred way to use Use target-specific optimization for speed (allow
LSB differences) is to create your model, generate code from the model, and
run the code on your target with profiling enabled. After you have your model
and code running the way it should (generating the correct answers), try
selecting this option and regenerating your code. Run your new code with
profiling and compare the profile reports to see whether target-specific
optimization improved the performance.

RunTime Options
Before you run your model as an executable on any C6000 target, you must
configure the run-time options for the model on the board.

By selecting values for the options available, you configure the operation of
your target.

Build action. To specify to Real-Time Workshop what to do when you click
Build, select one of the following options. The actions are cumulative—each
listed action adds features to the previous action on the list and includes all the
previous features:

• Generate_code_only—directs Real-Time Workshop to generate C code only
from the model. It does not use the TI software tools, such as the compiler
and linker, and you do not need to have CCS installed. Also, MATLAB does
not create the handle to CCS that results from the other options.

Note You cannot use Generate_code_only with DSP/BIOS enabled in your
project. To use the option of generating code without creating a project, or
using TI tools, you must clear Incorporate DSP/BIOS in the TIC6000 code
generation options.

Generate_code_only creates a file named model.bat—an MS-DOS batch
file that contains the TI C6000 compiler command line (cl6x) you use to

tic6000.book Page 80 Monday, February 6, 2006 10:39 AM

Setting Real-Time Workshop Options for C6000 Hardware

2-81

compile and link your generated code. In this file you find information you
need, such as the include paths, library locations, and default compiler
options to compile the code, and that are not stored in any other file
generated by the Generate_code_only build action. Learn more about the
batch file by reading the comments included in the file.

The build process for a model also generates the files modelname.c,
modelname.cmd, modelname.bld, and many others. It puts the files in a build
directory named modelname_c6000_rtw in your MATLAB working directory.
This file set contains many of the same files that Real-Time Workshop
generates to populate a CCS project when you choose Create_CCS_Project
for the build action.

• Create_CCS_Project—directs Real-Time Workshop to start CCS and
populate a new project with the files from the build process. This option
offers a convenient way to build projects in CCS.

• Archive_CCS_Library—directs Real-Time Workshop to archive the project
for this model. Use this option when you plan to use the model in a model
reference application. Model reference requires that you archive your CCS
projects for models that you use in model referencing.

• Build—builds the executable COFF file, but does not download the file to the
target.

• Build_and_execute—directs Real-Time Workshop to download and run
your generated code as an executable on your target.

Your selection for Build action determines what happens when you click
Build or press ctrl+B. Your selection tells Real-Time Workshop when to stop
the code generation and build process.

To run your model on the target, select Build_and_execute. This is the default
build action; Real-Time Workshop automatically downloads and runs the
model on your target board.

Note When you build and execute a model on your target, the Real-Time
Workshop build process resets the target automatically. You do not need to
reset the board before building models.

tic6000.book Page 81 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-82

Overrun action. To enable the overrun indicator, choose one of three ways for
the target processor to respond to an overrun condition in your model:

• None—ignore overruns encountered while running the model.

• Notify_and_continue—when the DSP encounters an overrun condition, it
performs the operation you specify in Overrun notification method and
continues running the executable. If you use a C6701 EVM LED block in
your model, you cannot determine whether the C6701 EVM LED block
enabled the external LED or if an overrun condition caused the LED to light.

• Notify_and_halt—respond to overrun conditions by stopping program
execution and executing the Overrun notification method option you
select. If you use an LED block in your model, you cannot determine whether
the LED block enabled the external LED or user-defined LEDs, or if an
overrun condition caused the LEDs to light.

Overrun notification method. In combination with the Overrun action
option, you choose how the Embedded Target for TI C6000 DSP notifies you
when your application goes into an overrun state. From the Overrun
notification method list, select one of the following notification functions:

• Print_message—when your application overruns, and Overrun action is
Notify_and_continue or Notify_and_halt, the software prints a message to
the standard output or the message log (for DSP/BIOS enabled projects).

• Turn_on_LEDs—when your application overruns, and Overrun action is
Notify_and_continue or Notify_and_halt, the software turns on the
external LED on the C6701 EVM or the user LEDs on the C6711 DSK. Note
that when you use an LED block in your model, you might not be able to
determine whether the LED block enabled the external LED or user-defined
LEDs, or an overrun condition caused the LEDs to light. Other target boards
might not provide LEDs and the LED option does not apply.

• Print_message_and_turn_on_LEDs—in an overrun situation where you
have selected a notification action for Overrun action, the software prints
a message and turns on the LEDs. The same rules apply as for the individual
notification actions.

tic6000.book Page 82 Monday, February 6, 2006 10:39 AM

Setting Real-Time Workshop Options for C6000 Hardware

2-83

Overrun Indicator and Software-Based Timer
Embedded Target for TI C6000 DSP includes software that generates
interrupts in models that do not have ADC or DAC blocks, or that use multiple
clock rates. In the following cases, the overrun indicator does not work:

• In multirate systems where the rate in the model is not the same as the base
clock rate for your model. When this is the case, the timer in the Embedded
Target for TI C6000 DSP provides the interrupts for setting the model rate.

• In models that do not include ADC or DAC blocks, the timer provides the
software interrupts that drive model processing.

TI C6000 Compiler/Linker Options
Options in this category determine how the TI C6000 compiler generates
compiled code for the assembler and linker to use.

If you change the settings in this dialog, your changes become part of the build
configuration options for your project in CCS. You can change these settings in
CCS later. In the dialog, as presented in the figure, the controls under TI C6000
compiler let you configure compiler operations.

tic6000.book Page 83 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-84

Compiler Options
Memory model. You must specify how to map the memory for your processor
in Memory model. The list provides options that affect how the compiler
handles near and far calls and data, and aggregate data.

Your selections for the memory model options affect how the Embedded Target
for TI C6000 DSP handles near and far data and near and far function calls. By
default, the Embedded Target for TI C6000 DSP, and the TI compiler, generate
small memory models that use near function calls and near data exclusively.
Accessing near data requires only one operation; far data requires more
operations. As a consequence, programs and code that use far data run more

tic6000.book Page 84 Monday, February 6, 2006 10:39 AM

Setting Real-Time Workshop Options for C6000 Hardware

2-85

slowly. You should refer to your CCS documentation for details about near and
far data and near and far function calls.

• Near_Calls_and_Data—tells the compiler to allocate calls and data as near
calls. This is the default behavior.

• Far_Aggregate_Data—tells the compiler to allocate aggregate data, like
arrays and structures, as far calls.

• Far_Calls—tells the compiler to allocate calls/functions as far calls.

• Far_Calls_and_Aggregate_Data—tells the compiler to allocate both calls
and aggregate data as far calls.

• Far_Calls_and_Data—tells the compiler to allocate both calls and data as
far calls.

When you select the Near_Calls_and_Data option, the Embedded Target for TI
C6000 DSP specifies that only near calls are used to access static and global
data. Near_Calls_and_Data represents the most efficient memory use. In
CCS, the equivalent setting is to choose Near Calls & Data for the Memory
model option in the build configuration. These are the default settings in CCS.

If you select Near_Calls_and_Data, but your data or program requires far calls,
the TI compiler returns an error message like the following in the CCS IDE;

error: can't allocate '.far'

or

error: can't allocate '.text'

indicating that your data does not fit in internal memory or your code or
program does not fit in internal memory. To eliminate these errors, select
Far_Calls_and_Data from the Memory model list.

Use the Far_Calls_and_Data selection when either or both of the following
conditions are true:

• Your static and external data do not fit within a 15-bit scaled offset from the
beginning of the .bss section of memory.

• You have calls in which the called function is more than ± 1 Mword away
from the call site.

tic6000.book Page 85 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-86

In the two instances above, if you select Near_Calls_and_Data but your
program meets the conditions specified, the TI linker issues the error message
shown earlier.

When you declare a function or data as far, its address is loaded into a register
and the compiler does an indirect load of that register (the -mln option in
Memory models in the project build configuration in CCS). For more
information on the -mln option, refer to your CCS documentation.

You can avoid the allocation error by selecting Far_Calls_and_Data for the
Memory model option. This prevents the compiler from using near calls,
offering you the ability to use all the available memory on your target. But note
that your program might run more slowly than if you use the internal map
option, and your data and program fit into memory without needing far calls
for access.

Optimization level. To let you determine the degree of optimization provided
by the TI optimizing compiler, you select the optimization level to apply to files
in your project. For details about the compiler options, refer to your CCS
documentation. When you create new projects, the Embedded Target for TI
C6000 DSP sets the optimization to Function(-o2).

Compiler verbosity. You can choose how much information the compiler
returns while it runs. Select from

• Verbose—returns all compiler messages

• Quiet—suppresses compiler progress messages

• Super Quiet—suppresses all compiler messages

Interrupt threshold (-mi). Interrupt threshold (-mi) enables an interrupt
threshold that defines the maximum number of cycles over which the compiler

tic6000.book Page 86 Monday, February 6, 2006 10:39 AM

Setting Real-Time Workshop Options for C6000 Hardware

2-87

can disable interrupts. You can use this option in various ways by setting
combinations for Interrupt threshold and Interrupt threshold value.

Using the Interrupt Threshold Option and Setting a Threshold Value
By default, Interrupt threshold is cleared and interrupts are explicitly
disabled around software pipelined loops. You can change this setting and
behavior to suit your application. Here are some tips for deciding when and
how to use the threshold value options:

• If your program uses profiling, the threshold option can help you prevent
profiling errors. The profiling feature in Embedded Target for TI C6000 DSP
uses DSP/BIOS STS objects in CCS that in turn use the DSP/BIOS clock
manager to keep track of elapsed time. The clock manager interrupt, which
defaults to a 1 KHz rate, or 1 cycle/ms, is used to increment a counter.
Whenever the code disables interrupts, your program risks delaying the
clock manager interrupt operation and the STS timing operations. If

Interrupt Threshold
Option

Interrupt Threshold
Value (Cycles)

Effect of the Option Settings

Cleared Not Applicable (Default) Interrupts are explicitly disabled around
software pipelined loops. The remainder of the code
is interruptible.

Selected Empty Compiler assumes the code is never interrupted
during execution.

Selected 1 Compiler generates fully interruptible code.

Selected Integer = 2 or
greater

The compiler analyzes the code for each loop and
determines the maximum number of cycles
required to execute the loop. If the maximum
number of cycles is less than the threshold value,
the compiler generates the optimal or fastest
version of the loop. When the maximum is larger
than the threshold, the compiler generates an
interruptible loop that still generates correct
output. In most cases this reduces the performance
of the loop.

tic6000.book Page 87 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-88

interrupts are disabled for 1 ms or longer, your profiling measurements will
contain timing errors.

This profiling error condition can arise if you use the compiler optimization
level -o2 or higher, because software pipelining causes interrupts to be
disabled during pipelined loops. Also, some C62x/C64x DSP library assembly
routines disable interrupts during execution. If your profiling measurements
are affected by this interaction, measured and reported execution times
might be shorter than the real execution times. To resolve this issue,
consider one of the following recommendations:

- Generate fully interruptible code by selecting the Interrupt threshold
option and entering 1 for the Interrupt threshold value. This disables
software pipelining and lowers the execution speed of your model. If your
model still runs without changing the desired sampling rate, this might be
a good option to maintain your profiling.

- Avoid disabling interrupts for more than 1 ms. This ensures that the clock
manager can always interrupt the code at 1 KHz (1 ms intervals).
Remember that you need to translate 1 ms to cycles to enter a threshold
value. The value in cycles varies depending on your CPU clock speed
(value in cycles = 1/1000 x CPU speed (in cycles/second)). Use the
calculated cycles value to set the Interrupt threshold value.

• If your program uses -o2 level compiler optimization (which is the default
optimization level), setting the threshold interrupt value can ensure that
critical interrupts happen as you expect. Using -o2 optimization mostly adds
the benefit of software pipelined loops around which interrupts are disabled.
When your application has time-critical interrupts that must be serviced, or
in situations where preemption occurs, such as in multitasking, multirate
models, disabling interrupts could cause problems. Consider the following
techniques to resolve this problem.

- Generate fully interruptible code by selecting the Interrupt threshold
option and entering 1 for the Interrupt threshold value. Setting 1 as the
interrupt value prevents the compiler from disabling interrupts for more
than one cycle—essentially allowing any interrupt to occur.

- Select Interrupt threshold and set Interrupt threshold value to
something close to the base sampling time of your model. To determine the

tic6000.book Page 88 Monday, February 6, 2006 10:39 AM

Setting Real-Time Workshop Options for C6000 Hardware

2-89

recommended threshold value, use the base sampling time of your model
and the CPU clock speed as shown here:

Interrupt threshold value < (0.8 x base sampling time x CPU clock speed).

This value usually produces good results with -o2 optimization.

For more information on using the Interrupt threshold (–mi) option, refer to
the documentation for the -mi compiler option provided in the online help for
CCS.

Interrupt threshold value (cycles). Setting this option to a positive integer
tells the compiler that uninterruptible code sections cannot exceed the
specified number of clock cycles in length. When you enable the Interrupt
threshold option, this option becomes active. Although any integer is
acceptable as a value, two have special significance:

• Value = 0. A 0 value (or empty) for Interrupt threshold value disables the
threshold and the compiler assumes the code is never interrupted.

• Value = 1. A 1 for the threshold value means the code is fully interruptible.
The clock/interrupt service can interrupt any code segment at any time.

Symbolic debugging. Selecting this option generates symbolic debugging
directives that the C source-level debugger uses, and enables assembly source
debugging. By default this option is selected—symbolic debugging is provided.

Retain .asm files. Select this option to direct Real-Time Workshop and the
Embedded Target for TI C6000 DSP to save your assembly language (.asm) files
after creation. The Embedded Target for TI C6000 DSP does not retain .asm
files by default. If you choose to keep the .asm files, Real-Time Workshop saves
the files to your current directory. When you create new projects, the
Embedded Target for TI C6000 DSP does not save your .asm files unless you
select this option.

Linker Options
As shown in the figure, you can configure the TI C6000 linker to perform
certain operations and use specified files. Note that the linker, not the
compiler, defines the memory map used and allocates code and data into
memory on the target. Refer to Texas Instruments TMS320C000 Optimizing C
Compiler User’s Guide and to the online help in CCS for more details about
using memory maps on TI processors.

tic6000.book Page 89 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-90

Retain .obj files. The linker uses object (.obj extension) files to generate a
single executable common object file format (COFF) file that you run on the
C6701 EVM or C6711 DSK. Select this option to direct Real-Time Workshop
and the Embedded Target for TI C6000 DSP to save your object (.obj) files after
creation. Real-Time Workshop saves the files to your current directory. Saving
your .obj files can speed up the compile process by not having to compile files
that you have not changed since you most recently compiled your project.
Retaining the .obj files is the default setting for new projects.

Create .map file. You can direct the linker to produce a map of the input and
output sections, including null areas, and place the listing in a file in your
current directory with the name modelname.map. When you clear this check
box, the linker does not produce the listing. New projects do not create the .map
file.

Stack size (bytes)
You can enter any stack size in bytes, using decimal format. For more
information about the stack and block output, refer to Enable local block
outputs in the Code Generation options in the Optimization category in the
Select tree. Also refer to the online Help system for more information about
Real-Time Workshop options for configuring and building models and
generating code.

Embedded Target for TI C6000 DSP Default Project
Configuration—custom_MW
Although CCS offers two standard project configurations, Release and Debug,
models you build with the Embedded Target for TI C6000 DSP use a custom
configuration that provides a third combination of build and optimization
settings—custom_MW.

Project configurations define sets of project build options. When you specify the
build options at the project level, the options apply to all files in your project.
For more information about the build options, refer to your TI CCS
documentation.

The default settings for custom_MW are the same as the Release project
configuration in CCS, except for the compiler options discussed in the next
section. custom_MW uses different compiler optimization levels to preserve
important features of the generated code.

tic6000.book Page 90 Monday, February 6, 2006 10:39 AM

Setting Real-Time Workshop Options for C6000 Hardware

2-91

Default Compiler Build Options in custom_MW
When you create a new project or build a model to your TI C6000 hardware,
your project and model inherit the build configuration settings from the
configuration custom_MW. The settings in custom_MW differ from the settings in
the default Release configuration in CCS in the compiler settings.

For the compiler options, custom_MW uses the Function(-o2) compiler setting.
The CCS default Release configuration uses File(-o3), a slightly more
aggressive optimization model. For memory configuration, where Release uses
the default memory model that specifies near functions and data, custom_MW
specifies near functions and data—the -ml1 memory model— because some
custom hardware might not support far calls or data or aggregate data. Your
CCS documentation provides complete details on the compiler build options.

You can change the individual settings or the build configuration within CCS.
Build configuration options that do not appear on these panes default to match
the settings for the Release build configuration in CCS.

tic6000.book Page 91 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-92

Model Reference and Embedded Target for TI C6000 DSP
Model reference lets your model include other models as modular components.
This capability provides useful features:

• Makes working with large models simpler by letting you build large models
from smaller ones, or even large ones.

• Lets you generate code once for all the modules in the entire model and only
regenerate code for modules that change.

• Lets you develop the modules independently.

• Lets you reuse modules/models by reference, rather than including the
model or module multiple times in your model. Additionally, multiple models
can refer to the same model or module.

Your Real-Time Workshop documentation provides much more information
about model reference.

How Model Reference Works
Model reference behaves differently in simulation and in code generation. For
this discussion, here are some terms you need to know.

• Top model—the root model block or model. It refers to other blocks or models.
In the model hierarchy, this is the topmost model.

• Referenced models—blocks or models that other models reference, such as
models the top model refers to. All models or blocks below the top model in
the hierarchy are reference models.

The following sections present a brief description of how model reference
works. More details are available in your Real-Time Workshop documentation
in the online Help system.

Model Reference in Simulation
When you simulate the top model, Real-Time Workshop detects that your
model contains referenced models. Simulink generates code for the referenced
models and uses the generated code to build shared library files for updating
the model diagram and simulation. It also creates an executable (a dynamic
linked library, .dll) for each reference model that is used to simulate the top
model.

tic6000.book Page 92 Monday, February 6, 2006 10:39 AM

Model Reference and Embedded Target for TI C6000 DSP

2-93

When you rebuild reference models for simulations or when you run or update
a simulation, Simulink rebuilds the model reference files. Whether reference
files or models are rebuilt depends on whether and how you change the models
and the Rebuild options settings of the Model Reference pane of the
Configuration Parameters dialog.

Model Reference in Code Generation
Real-Time Workshop requires executables to generate code from models. If you
have not simulated your model at least once, Real-Time Workshop creates
a .dll for simulation.

Now, for each referenced model, the code generation process calls make_rtw and
builds each referenced model. This build process creates a library for each of
the referenced models in your model.

After building all the referenced models, Real-Time Workshop calls make_rtw
on the top model, linking to all the library files it created for the associated
referenced models.

Using Model Reference with Embedded Target for TI
C6000 DSP
With few limitations or restrictions, Embedded Target for TI C6000 DSP
provides full support for generating code from models that use model reference.

Build Action Setting
The most important requirement for using model reference with the TI targets
is that you must set the Build action (go to Configuration
Parameters >TIC6000 Code Generation) for all models referred to in the
simulation to Archive_CCS_Library.

To set the build action

1 Open your model.

2 Select Simulation—>Configuration Parameters from the model menus.

The Configuration Parameters dialog opens.

3 From the Select tree, choose TIC6000 Code Generation.

tic6000.book Page 93 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-94

4 In the right pane, under Runtime, set Build action to
Archive_CCS_Library.

If your top model uses a reference model that does not have the build action set
to Archive_CCS_Library, the build process automatically changes the build
action to Archive_CCS_Library and issues a warning about the change.

As a result of selecting the Archive_CCS_Library setting, other options are
disabled:

• DSP/BIOS is disabled for all referenced models. Only the top model supports
DSP/BIOS operation.

• Overrun action, Overrun notification method, Exporting CCS object to
the workspace, and Stack size are all disabled for the referenced models.

Target Preferences Blocks in Reference Models
Each referenced model and the top model must include a Target Preferences
block for the correct target. You must configure all the Target Preferences
blocks for the same target.

To obtain information about which compiler to use and which archiver to use
to build the referenced models, the referenced models require Target
Preferences blocks. Without them, the compile and archive processes does not
work.

By design, model reference does not allow information to pass from the top
model to the referenced models. Referenced models must contain all the
necessary information, which the Target Preferences block in the model
provides.

Other Block Limitations
Model reference with Embedded Target for TI C6000 DSP does not allow you
to use certain blocks or S-functions in reference models:

• No blocks from the C62x DSP Library (in c6000lib) (because these are
non-inlined S-functions)

• No blocks from the C64x DSP Library (in c6000lib) (because these are
non-inlined S-functions)

tic6000.book Page 94 Monday, February 6, 2006 10:39 AM

Model Reference and Embedded Target for TI C6000 DSP

2-95

• No non-inlined S-functions

• No driver blocks, such as the ADC or DAC blocks from any Embedded Target
for TI C6000 DSP library.

tic6000.book Page 95 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-96

Targeting Your C6701 EVM and Other Hardware
Texas Instruments markets a complete set of tools for you to use with the
C6701 EVM. These tools are primarily intended for rapid prototyping of control
systems and hardware-in-the-loop applications. This section provides a brief
example of how to use TI development tools with Real-Time Workshop and the
C6701 EVM block library.

Executing code generated from Real-Time Workshop on a particular target in
real time requires target-specific code. Target-specific code includes I/O device
drivers and an interrupt service routine. Other components, such as a
communication link with Simulink, are required if you need the ability to
download parameters on the fly to your target hardware. Since these
components are specific to particular hardware targets (in this case, the
C6701 EVM), you must ensure that the target-specific components are
compatible with the target hardware. To allow you to build an executable, the
Embedded Target for TI C6000 DSP provides a target makefile specific to the
evaluation module. This target makefile invokes the optimizing compiler,
provided as part of TI Code Composer Studio.

Used in combination with Real-Time Workshop, TI products provide an
integrated development environment that, once installed, needs no additional
coding.

Typical Targeting Process
Generally, targeting hardware, or a development environment as it is called by
some, requires that you complete a series of processes that starts with building
your model and ends with generating code to suit your target.

1 Build the Simulink model of your algorithm or process to be converted to
code for your target.

2 Add target-specific blocks to your model, such as ADC and DAC blocks, and
configure the block parameters.

3 Add a target preferences block to your model. Select the block that best
matches your target—one of the device specific blocks, like C6711 DSK, or
the Custom C6000 block when none of the specific blocks is appropriate. All
models that you target to a C6000-processor-based hardware must have
a target preferences block at the top level of the model.

tic6000.book Page 96 Monday, February 6, 2006 10:39 AM

Targeting Your C6701 EVM and Other Hardware

2-97

4 Configure the options on the target preferences block to select the target,
map memory segments, allocate sections to the memory segments, and
configure other target-specific options.

5 Set the configuration parameters for your model. Notice that you do this step
after you add the target preferences block to your model.

6 Build your model to your target.

Targeting the C6701 Evaluation Module
After you install the C6701 EVM development board and supporting TI
products on your PC, start MATLAB. At the MATLAB command prompt, enter
c6701evmlib. This opens a Simulink block library, c6701evmlib, that includes
a set of blocks for C6701 EVM I/O devices:

These blocks are associated with your C6701 EVM board. As needed, add the
blocks to your model.

With your model open, select Simulation -> Configuration Parameters. From
this dialog, select Real-Time Workshop from the Select tree. You must specify
the appropriate versions of the system target file and template makefile. For
the C6701 EVM, in the Real-Time Workshop pane, specify

• Real-Time Workshop system target file—ti_c6000.tlc

• Template makefile—ti_c6ooo.tmf

With this configuration, you can generate a real-time executable and download
it to the TI C6701 evaluation board. Do this by clicking Build on the Real-Time
Workshop pane. The Real-Time Workshop automatically generates C code and

C6701 EVM ADC Configure the analog to digital converter

C6701 EVM DAC Configure the digital to analog converter

C6701 EVM LED Control the user status LEDs on the
C6701 EVM

C6701 EVM Reset Reset the processor on the C6701 EVM

tic6000.book Page 97 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-98

inserts the I/O device drivers as specified in your block diagram. These device
drivers are inserted in the generated C code as inlined S-functions. Inlined
S-functions offer speed advantages and simplify the generated code. For more
information about inlining S-functions, refer to Target Language Compiler
Reference documentation. For a complete discussion of S-functions, refer to
your Writing S-Functions documentation.

During the same build operation, the template makefile and block parameter
dialog entries are combined to form the target makefile for your TI evaluation
module. This makefile invokes the TI compiler to build an executable file. If you
select the Build_and_execute option, Real-Time Workshop automatically
downloads the executable to the TI evaluation board via the peripheral
component interface (PCI) bus. After downloading the executable file to the
C6701 EVM, the build process runs the file on the processor.

Starting and Stopping DSP Applications on the C6701 EVM
When you generate code, build the project, and download the code for your
Simulink model to your C6701 EVM, you are running actual machine code
corresponding to the block diagram you built in Simulink. To start running
your DSP application on the evaluation module, you must open your Simulink
model and rebuild the machine executable by clicking Build on the Real-Time
Workshop pane. To start the application on the C6701 EVM, you use
Real-Time Workshop to rebuild the executable from the Simulink model and
download the code to the board.

Your model runs until it encounters one of the following actions:

• You select Debug -> Halt in CCS.

• You shut down the host PC.

• The process encounters a Stop block in the model code.

• The running application encounters an error condition that stops the
process.

If you included a Reset C6701 EVM block in your model, clicking the block
stops the running application and restores the digital signal processor to its
initial state.

tic6000.book Page 98 Monday, February 6, 2006 10:39 AM

Targeting Your C6701 EVM and Other Hardware

2-99

Note When you build and execute a model on the C6701 EVM, the Real-Time
Workshop build process resets the evaluation module automatically. You do
not need to reset the board before building models. Use the Reset C6701 EVM
block to stop processes that are running on the evaluation module, or to return
the board to a known state for any reason.

Configuring Your C6701 EVM
When you install the C6701 EVM, set the dual inline pin (DIP) switches as
shown below. If you have installed the board with different settings,
reconfigure the board. Refer to your TMS320C6201/6701 Evaluation Module
User’s Guide for details.

DIP Switch Name Setting Effect

SW2-1 BOOTMODE4 On Boot mode setting

SW2-2 BOOTMODE3 On Boot mode setting

SW2-3 BOOTMODE2 Off Sets memory map = 1 when SW2-5 is off

SW2-4 BOOTMODE1 On Boot mode setting

SW2-5 BOOTMODE0 Off Sets memory map =1 when SW2-3 is off

SW2-6 CLKMODE On Sets multiply-by-4 mode

SW2-7 CLKSEL On Selects oscillator A

SW2-8 ENDIAN On Selects little endian mode

SW2-9 JTAGSEL Off Selects internal Test Bus Controller (TBC)

SW2-10 USER2 On user-defined option

SW2-11 USER1 On user-defined option

SW2-12 USER0 On user-defined option

tic6000.book Page 99 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-100

Confirming Your C6701 EVM Installation
Texas Instruments supplies a test utility to verify the operation of the board
and its associated software. For complete information about running the test
utility and interpreting the results, refer to your TMS320C6201/6701
Evaluation Module User’s Guide.

To run the C6701 EVM verification test, complete the following steps after you
install your board:

1 Start CCS.

2 Select Start -> Programs -> Code Composer Studio -> EVM Confidence
Test. As the test runs, the results appear on your display.

By default, the test utility does not create a log file to store the test results.
To specify the name and location of a log file to contain the results of the
confidence test, use the command line options in CCS to run the confidence
test utility. For further information about running the verification test from
a DOS window and using the command line options, refer to
TMS320C6201/6701 Evaluation Module User’s Guide.

3 Review the test results to verify that everything works. Check that the
options settings match the settings listed in the table above.

If your options settings do not match the configuration shown in the
preceding table, reconfigure your C6701 EVM. After you change your board
configuration, rerun the verification utility to check your new settings.

Testing Your C6701 EVM
The Embedded Target for TI C6000 DSP includes a Simulink demonstration
model called c6701evmtest. You can use this model to verify that you installed
your C6701 EVM hardware and your Embedded Target for TI C6000 DSP
software correctly and the board settings are suitable for targeting. The
demonstration model presets the Real-Time Workshop settings to build and
run the model on your board.

To run the model you need a signal generator, an oscilloscope, and audio cables
to connect the signal generator and scope to your C6701 EVM. Refer to the
Texas Instruments TMS320C6201/6701 Evaluation Module User’s Guide for
more information on connecting sources and scopes to your C6701 EVM. In

tic6000.book Page 100 Monday, February 6, 2006 10:39 AM

Targeting Your C6701 EVM and Other Hardware

2-101

addition, connect your signal generator to the oscilloscope input so you can
display the source and output signals together.

To Confirm the Operation of Your C6701 EVM
As an initial test to determine that your Embedded Target for TI C6000 DSP
software and C6701 EVM are installed and operating correctly, open and build
the Simulink model c6701evmtest. See the model in the figure below.

1 Enter c6701evmtest at the MATLAB command prompt.

The model opens in Simulink.

2 Select Configuration Parameters from the Simulation menu.

Figure 2-2, Using c6701evmtest to Test Your Embedded Target for TI C6000
DSP Installation, shows the model c6701evmtest with the Configuration
Parameters option selected.

Type Ctrl+B to build
and execute model

on C6701 EVM

Reset
C6701 EVM

Modulator

Mod Source

Line Out
C6701 EVM

DAC

Line In
C6701 EVM

ADC

tic6000.book Page 101 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-102

Figure 2-2: Using c6701evmtest to Test Your Embedded Target for TI C6000
DSP Installation

3 On the Configuration Parameters dialog, click Real-Time Workshop in the
Select tree to view the Real-Time Workshop pane.

4 Click Build to run the model. Building the model provides a comprehensive
test of the build, download, and run processes in the Embedded Target for
TI C6000 DSP.

A lengthy series of messages appears in the MATLAB Command Window,
starting with

Starting Real-Time Workshop build procedure for model:
c6701evmtest.mdl

tic6000.book Page 102 Monday, February 6, 2006 10:39 AM

Targeting Your C6701 EVM and Other Hardware

2-103

Invoking Target Language Compiler on c6701evmtest.rtw

If c6701evmtest.mdl builds, compiles, and downloads to your C6701 EVM
successfully, the following message strings appear at the end of the build
process messages.

C6x EVM Command Line COFF Loader Utility, Version 1.20a
Copyright (c) 1998 by DNA Enterprises, Inc.
Found board type:EVM6x Revision:0
Using DSP memory map 1.
Downloaded:c6701evmtest.out
Successful completion of Real-Time Workshop build procedure
for model:c6701evmtest

When you receive this message, your model is running on the C6701 EVM. You
should be able to see the input and output on your oscilloscope. When you
change the input, the output should change as well.

Try increasing the frequency you send to your C6701 EVM and watch to see
that the output amplitude modulation changes to match.

Error Messages While Building C6701evmtest
If you receive an error message from the build and compile process, your board
or the software may not be configured correctly. Reinstall the board and review
the configurations listed in “Configuring Your C6701 EVM” on page 2-99. You
need to resolve errors that appear in this build before you start to develop and
build your own models.

Note that after you build and download the model to the board, the build
process runs the downloaded code on your C6701 EVM immediately.

Verifying That C6701evmtest Is Running
To see that the model is running, turn on your signal generator and set the
output to produce a sine wave at 8000 Hz. Connect your oscilloscope to display
both the input signal from the signal generator and the output from your
C6701 EVM. On the oscilloscope display, you should see the sine wave input
from the signal generator, and the amplitude-modulated sine wave output from
your C6701 EVM. If you change the frequency of the sine wave input, you
should see the change in the input and output traces on the oscilloscope.

tic6000.book Page 103 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-104

Starting and Stopping C6701evmtest on the C6701 EVM
When you build and download the model c6701evmtest.mdl to your C6701
EVM, you are not running a simulation of the model. You are running the
actual machine code, in real time, corresponding to the block diagram in
c6701evmtest.mdl. To run c6701evmtest.mdl on the evaluation module, open
the Simulink model and click Build on the Real-Time Workshop pane.
Clicking Build rebuilds the machine executable and downloads the new
executable to your board. Building and downloading the new executable starts
the process running on your C6701 EVM. The Embedded Target for TI C6000
DSP offers a function, run, that restarts your loaded program on your target.

Once your application is running on your target, stop the process by one of the
following methods:

• Using the Debug -> Halt function in CCS.

• Using halt from the MATLAB command prompt.

• Clicking the C6701 EVM Reset block in your model (if you added one) or in
the C6701 EVM board support library.

Creating Your Simulink Model for Targeting
You create real-time digital signal processing models the same way you create
other Simulink models—by combining standard DSP blocks and C-MEX
S-functions.

You add blocks to your model in several ways:

• Use blocks from the Signal Processing Blockset

• Use blocks from the fixed-point blocks library TI C62x DSPLIB or TI C64x
DSPLIB

• Use other Simulink discrete-time blocks

• Use the blocks provided in the C6000 blockset: ADC, DAC, LED and Reset
blocks for specific supported target hardware

• Use blocks that provide the functions you need from any blockset installed
on your computer

• Create and use custom blocks

Once you have designed and built your model, you generate C code and build
the real-time executable by clicking Build on the Real-Time Workshop pane

tic6000.book Page 104 Monday, February 6, 2006 10:39 AM

Targeting Your C6701 EVM and Other Hardware

2-105

of the Configuration Parameters dialog. The automatic build process creates
the file modelname.out containing a real-time model image in COFF file format
that can run on your target.

The file modelname.out is an executable whose format is target-specific. You
can load the file to your target and execute it in real time. Refer to your
Real-Time Workshop documentation for more information about the build
process.

Notes About Selecting Blocks for Your Models
Many blocks in the blocksets communicate with your MATLAB workspace. All
the blocks generate code, but they do not work as they do on your desktop—
they waste time waiting to send or receive data from your workspace, slowing
your signal processing application without adding instrumentation value.

For this reason, we recommend you avoid using certain blocks, such as the
Scope block and some source and sink blocks, in Simulink models that you use
on Embedded Target for TI C6000 DSP targets. In the next table, we present
the blocks you should not use in your target models.

Block
Name/Category

Library Description

Scope Simulink, Signal
Processing Blockset

Provides oscilloscope view of
your output. Do not use the
Save data to workspace
option on the Data history
pane in the ‘Scope’
parameters dialog.

To Workspace Simulink Return data to your MATLAB
workspace.

From Workspace Simulink Send data to your model from
your MATLAB workspace.

tic6000.book Page 105 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-106

In general, using blocks to add instrumentation to your application is
a valuable tool. In most cases, blocks you add to your model to display results

Spectrum Scope Signal Processing
Blockset

Compute and display the
short-time FFT of a signal. It
has internal buffering that can
slow your process without
adding value.

To File Simulink Send data to a file on your host
machine.

From File Simulink Get data from a file on your
host machine.

Triggered to
Workspace

Signal Processing
Blockset

Send data to your MATLAB
workspace.

Signal To
Workspace

Signal Processing
Blockset

Send a signal to your MATLAB
workspace.

Signal From
Workspace

Signal Processing
Blockset

Get a signal from your
MATLAB workspace.

Triggered Signal
From Workspace

Signal Processing
Blockset

Get a signal from your
MATLAB workspace.

To Wave device Signal Processing
Blockset

Send data to a .wav device.

From Wave
device

Signal Processing
Blockset

Get data from a .wav device.

To Wave file Signal Processing
Blockset

Send data to a .wav file.

From Wave file Signal Processing
Blockset

Get data from a .wav file.

Block
Name/Category

Library Description

tic6000.book Page 106 Monday, February 6, 2006 10:39 AM

Targeting Your C6701 EVM and Other Hardware

2-107

or create plots, such as Histogram blocks, add to your generated code without
affecting your running application.

When you need to send data to or receive data from your target, use the To Rtdx
and From Rtdx blocks to accomplish the data transfer.

tic6000.book Page 107 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-108

C6701 EVM Tutorial 2-1—Single Rate Application
In this tutorial you create and build a model that simulates audio
reverberation applied to an input signal. Reverberation is similar to the echo
effect you can hear when you shout across an open valley or canyon, or in a
large empty room.

You can choose to create the Simulink model for this tutorial from blocks in
Signal Processing Blockset and Simulink block libraries, or you can find the
model in the Embedded Target for TI C6000 DSP demos. For this example, we
show the model as it appears in the demonstration program. The
demonstration model name is c6701evmafxr.mdl as shown in the next figure.
Open this model by entering c6701evmafxr at the MATLAB prompt.

To run this model you need a microphone connected to the Mic In connector on
your C6701 EVM, and speakers and an oscilloscope connected to the Line Out
connector on your C6701 EVM. To test the model, speak into the microphone
and listen to the output from the speakers. You can observe the output on the
oscilloscope as well.

To download and run your model on your C6701 EVM, complete the following
tasks:

1 Use Simulink blocks, Signal Processing Blockset blocks, and blocks from
other blocksets to create your model application.

2 Add the Embedded Target for TI C6000 DSP blocks that let your signal
sources and output devices communicate with your C6701 EVM—the C6701
EVM ADC and C6701 EVM DAC blocks that you find in the Embedded
Target for TI C6000 DSP c6000lib blockset.

3 Add the C6701EVM target preferences block from the C6000 Target
Preferences library to your model. Verify and set the block parameters for
your hardware. In most cases, the default settings work fine.

If you are using a C6701 simulator target, select Simulator on the Board
info pane of the target preferences block.

4 Set the configuration parameters for your model, including

- Solver parameters such as simulation start and stop time and solver
options

tic6000.book Page 108 Monday, February 6, 2006 10:39 AM

C6701 EVM Tutorial 2-1—Single Rate Application

2-109

- Real-Time Workshop options such as target configuration and target
compiler selection

5 Build your model to the selected target.

6 Test your model running on the target by changing the input to the target
and observing the output from the target.

Your target for this tutorial is your C6701 EVM installed on your PC. Be sure
to configure and test your board as directed in “Configuring Your C6701 EVM”
on page 2-99 in this guide before continuing this tutorial.

Building the Audio Reverberation Model
To build the model for audio reverberation, follow these steps:

1 Start Simulink.

2 Create a new model by selecting File -> New -> Model from the Simulink
menu bar.

3 Use Simulink blocks and Signal Processing Blockset blocks to create the
following model.

Look for the Integer Delay block in the Signal Operations library of the
Signal Processing Blockset. You do not need to add the input and output
signal lines at this time. When you add the C6701 EVM blocks in the next
section, you add the input and output to the sum blocks.

z
−1

Integer Delay

0.9

Gain

0.8

Feedback Gain

tic6000.book Page 109 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-110

4 Save your model with a suitable name before continuing.

Adding C6701 EVM Blocks to Your Model
So that you can send signals to your C6701 EVM and get signals back from the
board, the Embedded Target for TI C6000 DSP includes a block library
containing five blocks designed to work with the codec on your C6701 EVM:

• Input block (C6701 EVM ADC)

• Output block (C6701 EVM DAC)

• Light emitting diode block (C6701 EVM LED)

• Software reset block (Reset C6701 EVM)

• DIP switch block (C6701 EVM DIP Switch)

Entering c6701evmlib at the MATLAB prompt opens this window showing the
library blocks.

Embedded Target for TI C6000 DSP Target for C6701 EVM Block Library
C6701evmlib

tic6000.book Page 110 Monday, February 6, 2006 10:39 AM

C6701 EVM Tutorial 2-1—Single Rate Application

2-111

This block library is included in the Embedded Target for TI C6000 DSP
c6000lib blockset in the Simulink Library browser.

The C6701 EVM ADC and C6701 EVM DAC blocks generate code that
configures the codec on your C6701 EVM to accept input signals from the input
connectors on the board, and send the model output to the output connector on
the board. Essentially, the C6701 EVM ADC and C6701 EVM DAC blocks add
driver software that controls the behavior of the codec for your model.

To add C6701 EVM target blocks to your model, follow these steps:

1 Double-click Embedded Target for TI C6000 DSP in the Simulink Library
browser to open the c6000lib blockset.

2 Click the library C6701 EVM Board Support to see the blocks available for
your C6701 EVM.

3 Drag and drop C6701 EVM ADC and C6701 EVM DAC blocks to your model
as shown in the figure.

4 Connect new signal lines as shown in the figure.

5 Finally, from the TI C6000 Target Preferences block library, add the
C6701EVM target preferences block to the model. Notice that it is not
connected to any other block in the model.

z
−1800

Integer Delay

0.8

Feedback Gain

.9

Delay Mix

Line Out
C6701 EVM

DAC

DAC

C6701EVM

Mic In
C6701 EVM

ADC

ADC

tic6000.book Page 111 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-112

Configuring the Embedded Target for TI C6000 DSP Blocks
To configure the Embedded Target for TI C6000 DSP blocks in your model,
follow these steps:

1 Click the C6701 EVM ADC block to select it.

2 Select Block Parameters from the Simulink Edit menu.

3 Set the following parameters for the block:

- Clear the Stereo check box.

- Select the +20 dB mic gain boost check box.

[1] From the list, set Sample rate to 8000.

- Set Codec data format to 16-bit linear.

- For Output data type, select Double from the list.

- Set Scaling to Normalize.

- Set Source gain to 0.0.

- Enter 64 for Samples per frame.

Include a signal path directly from the input to the output so you can display
both the input signal and the modified output signal on the oscilloscope for
comparison.

4 For C6701 EVM ADC source, select Mic In.

5 Click OK to close the C6701 EVM ADC dialog.

6 Now set the options for the C6701 EVM DAC block.

- Set Codec data format to 16-bit linear.

- Set Scaling to Normalize.

- For DAC attenuation, enter 0.0.

- Set Overflow mode to Saturate.

7 Click OK to close the dialog.

8 Click the C6701EVM target preferences block.

9 Select Block Parameters from the Simulink Edit menu.

tic6000.book Page 112 Monday, February 6, 2006 10:39 AM

C6701 EVM Tutorial 2-1—Single Rate Application

2-113

10 Verify the parameter settings for the C6701 EVM target. The figures below
show the proper values.

Board info Settings

tic6000.book Page 113 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-114

Memory Settings

tic6000.book Page 114 Monday, February 6, 2006 10:39 AM

C6701 EVM Tutorial 2-1—Single Rate Application

2-115

Section Settings

You have completed the model. Now configure the Real-Time Workshop
options to build and download your new model to your C6701 EVM.

Specifying Configuration Parameters for Your
Model
The following sections describe how to build and run real-time digital signal
processing models on your C6701 EVM. Running a model on the target starts
with configuring and building your model from the Configuration
Parameters dialog in Simulink.

tic6000.book Page 115 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-116

Setting Simulink Configuration Parameters
After you have designed and implemented your digital signal processing model
in Simulink, complete the following steps to set the configuration parameters
for the model:

1 Open the Configuration Parameters dialog and set the appropriate options
on the Solver category for your model and for the Embedded Target for TI
C6000 DSP.

- Set Start time to 0.0 and Stop time to inf (model runs without stopping).
Generated code does not honor this setting if you set a stop time. Set this
to inf for completeness.

- Under Solver options, select the fixed-step and discrete settings from
the lists

- Set the Fixed step size to Auto and the Tasking Mode to Single Tasking

Ignore the Data Import/Export, Diagnostics, and Optimization categories in
the Configuration Parameters dialog. The default settings are correct for
your new model.

Setting Real-Time Workshop Target Build Options
To configure Real-Time Workshop to use the correct target files and to compile
and run your model executable file, you set the options in the Real-Time
Workshop category of the Configuration Parameters dialog. Follow these
steps to set the Real-Time Workshop options to target your C6701 EVM:

1 Select Real-Time Workshop on the Select tree.

2 In Target selection, click Browse to select the system target file for C6000
targets—ti_c6000.tlc. It may already be the selected target.

Clicking Browse opens the System Target File Browser.

3 On the System Target File Browser, select the system target file
ti_c6000.tlc and click OK to close the browser.

Real-Time Workshop updates the Template makefile and Make command
options with the appropriate files based on your system target file selection.

4 From the Select tree, choose TI C6000 code generation to specify code
generation options that apply to the C6701 EVM target.

tic6000.book Page 116 Monday, February 6, 2006 10:39 AM

C6701 EVM Tutorial 2-1—Single Rate Application

2-117

5 Under Code Generation, select the Inline Signal Processing Blockset
functions option. Clear the other options.

6 Under Target Selection, verify that Export CCS handle to MATLAB base
workspace is selected and provide a name for the handle (optional).

7 Select TI C6000 Compiler/Linker on the Select tree to set the compiler
options.

8 Set the following options in the dialog under Compiler:

- Optimization level should be Function (-o2).

- Set Compiler verbosity to Quiet.

Clear the other options under Compiler.

9 Set the linker operation options by selecting the Retain .obj files check box.

10 Change the category on the Select tree to Hardware Implementation.

11 Set Byte ordering to Little endian.

12 Change the category again to TI C6000 Code Generation.

13 Set the following Real-Time Workshop run-time options:

- Build action: Build_and_execute.

- Overrun action: Notify_and_halt.

- Overrun notification method: Turn_on_LEDs.

You have configured the Real-Time Workshop options that let you target your
C6701 EVM. You may have noticed that you did not configure a few Real-Time
Workshop categories on the Select tree, such as Comments, Symbols, and
Optimization.

For your new model, the default values for the options in these categories are
correct. For other models you develop, you may want to set the options in these
categories to provide information during the build and to run TLC debugging
when you generate code.

tic6000.book Page 117 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-118

Building and Executing Your Model on Your C6701 EVM
After you set the configuration parameters and configure Real-Time Workshop
to create the files you need, you direct Real-Time Workshop to build, download,
and run your model executable on your target:

1 Change the category to Real-Time Workshop on the Configuration
Parameters dialog.

2 Clear Generate code only and click Build to generate and build an
executable file targeted to your C6701 EVM.

When you click Build with Build_and_execute selected for Build action,
the automatic build process creates an executable file that can be run by the
C6701 DSP on your C6701 EVM, and then downloads the executable file to
the target and runs the file.

3 To stop model execution, click the Reset C6701 EVM block or use the Halt
option in CCS. You could type halt from the MATLAB command prompt as
well.

Testing Your Audio Reverb Model
With your model running on your C6701 EVM, speak into the microphone you
connected to the board. The model should generate a reverberation effect out of
the speakers, delaying and echoing the words you speak into the mike. If you
built the model yourself, rather than using the supplied model c6701evmafxr,
try running the demonstration model to compare the results.

tic6000.book Page 118 Monday, February 6, 2006 10:39 AM

C6701 EVM Tutorial 2-2—A Multistage Application

2-119

C6701 EVM Tutorial 2-2—A Multistage Application
For this tutorial, we demonstrate an application that uses multiple stages—
using wavelets to remove noise from a noisy signal. The model name is
c6701evmwdnoisf. As with any model file, you can run this denoising
demonstration by typing c6701evmwdnoisf at the MATLAB prompt. The model
also appears in the MATLAB demos collection in the Help browser—under
Simulink demos, in the Embedded Target for TI C6000 DSP category. Here is
a picture of the model as it appears in the demonstration library.

Unlike the audio reverberation demo, this model is difficult to build from blocks
in Simulink. It uses complex subsystems for the Delay Alignment block and the
Soft Threshold block. For this tutorial you work with a copy of the
demonstration model, rather than creating the model.

This tutorial takes you through generating C code and building an executable
program from the demonstration model. The resulting program runs on your
C6701 EVM as an executable COFF file.

tic6000.book Page 119 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-120

Working and Build Directories
It is convenient to work with a local copy of the c6701evmwdnoisf model, stored
in its own directory, which you named (something like c6701dnoisfex). This
discussion assumes that the c6701dnoisfex directory resides on drive d:. Use
a different drive letter if necessary for your machine. Set up your working
directory as follows:

1 Create the new model directory from the MATLAB command line by typing

!mkdir d:\c6701dnoisfex (on PC)

2 Make c6701dnoisfex your working directory in MATLAB.

cd d:/c6701dnoisfex

3 Open the c6701evmwdnoisf model.

c6701evmwdnoisf

The model appears in the Simulink window.

4 From the File menu, choose Save As. Save a copy of the c6701evmwdnoisf
model as d:/c6701dnoisfex/dnoisfrtw.mdl.

During code generation, Real-Time Workshop creates a build directory within
your working directory. The build directory name is model_target_rtw,
derived from the name of your source model and your chosen target. In the
build directory, Real-Time Workshop stores generated source code and other
files created during the build process. You examine the contents of the build
directory at the end of this tutorial.

Setting Simulation Program Parameters
To generate code correctly from the dnoisfrtw model, you must change some
of the configuration parameters. In particular, Real-Time Workshop uses
a fixed-step solver. To set the parameters, use the Configuration Parameters
dialog as follows:

1 From the Simulation menu, choose Configuration Parameters. The
Configuration Parameters dialog opens.

tic6000.book Page 120 Monday, February 6, 2006 10:39 AM

C6701 EVM Tutorial 2-2—A Multistage Application

2-121

2 Click Solver and enter the following parameter values on the Solver pane.
Note that Embedded Target for TI C6000 DSP does not honor a stop time if
you set one here.

Start Time: 0.0

Stop Time: inf

Solver options: set Type to Fixed-step. Select the discrete solver
algorithm.

Fixed step size: auto

Tasking mode for periodic sample times: Auto

3 Click Apply. Then click OK to close the dialog.

4 Save the model. Configuration parameters persist with the model (as the
model configuration set), for you to use in future sessions.

In the next figure you see the Solver pane with the correct parameter settings.

tic6000.book Page 121 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-122

Selecting the Target Configuration
To specify the desired target configuration, you choose the

• System target file

• Template makefile

• make command

In these tutorials, you do not need to specify these parameters individually.
Instead, you use the ready-to-run ti_c6000.tlc target configuration.

tic6000.book Page 122 Monday, February 6, 2006 10:39 AM

C6701 EVM Tutorial 2-2—A Multistage Application

2-123

Note The Real-Time Workshop category has several subcategories, which
you select using the Select tree in the Configuration Parameters dialog.
During this tutorial you change or review options in a few of the categories in
the tree.

To target your C6701 EVM:

1 From the Simulation menu, choose Configuration Parameters. The
Configuration Parameters dialog opens.

2 Click Real-Time Workshop on the Select tree. The Real-Time Workshop
pane activates.

tic6000.book Page 123 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-124

3 Click Browse next to the System target file field. This opens the System
Target File Browser. The browser displays a list of available target
configurations. When you select a target configuration, Real-Time
Workshop automatically chooses the appropriate system target file,
template makefile, and make command.

tic6000.book Page 124 Monday, February 6, 2006 10:39 AM

C6701 EVM Tutorial 2-2—A Multistage Application

2-125

4 From the list of available configurations, select ti_c6000.tlc and click OK.

The Real-Time Workshop pane now displays the correct Real-Time
Workshop system target file (ti_c6000.tlc), Template makefile
(ti_c6000.tmf), and Make command (make_rtw).

5 To decide whether to export a CCS handle to your MATLAB work space
when you generate code, or run your model, select TI C6000 Code
Generation from the Select tree.

tic6000.book Page 125 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-126

6 To export the handle (a variable) that CCS creates when you generate code
from your model, select Export CCS handle to MATLAB workspace and
enter a name for the handle in CCS handle name.

7 Select the Inline Signal Processing Blockset functions and the
Incorporate DSP/BIOS options, as shown.

8 Select Optimization from the Select tree. A new set of options appears. The
options displayed here are common to all target configurations. Make sure
that all options are set to their defaults, as shown below.

tic6000.book Page 126 Monday, February 6, 2006 10:39 AM

C6701 EVM Tutorial 2-2—A Multistage Application

2-127

9 Select Debug from the Select tree to access the Real-Time Workshop Process
and TLC process debugging options. Clear the check boxes on this pane.
Check Verbose build to see all the messages that Real-Time Workshop
issues while it generates your code or project. Selecting Verbose build is
optional, but can be useful when you are new to the code generation process

tic6000.book Page 127 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-128

10 Select TI C6000 Compiler/Linker from the Select tree. The options
displayed on the new pane are specific to the C6000 target and TI compiler.
Check to make sure that the options are set as shown.

tic6000.book Page 128 Monday, February 6, 2006 10:39 AM

C6701 EVM Tutorial 2-2—A Multistage Application

2-129

.

11 Select TI C6000 Code Generation on the Select tree to access the C6000
run-time options. Set the run-time options as shown.

tic6000.book Page 129 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-130

12 Click OK to close the Configuration Parameters dialog. Save the model to
retain your new build settings.

Building and Running the Program
The Real-Time Workshop build process generates C code from your model, and
then compiles and links the generated program. To build and run your
program,

1 Access the Configuration Parameters dialog for your model.

tic6000.book Page 130 Monday, February 6, 2006 10:39 AM

C6701 EVM Tutorial 2-2—A Multistage Application

2-131

2 Clear Generate code only and click Build in the Real-Time Workshop pane
to start the build process.

3 A number of messages concerning code generation and compilation appear
in the MATLAB Command Window. The initial messages are

Starting Real-Time Workshop build procedure for model:
dnoisfrtw
Generating code into build directory: .\dnoisfrtw_c6000_rtw

The content of the succeeding messages depends on your compiler and
operating system.The final message is

Successful completion of Real-Time Workshop build procedure
for model: dnoisfrtw

4 The working directory now contains an executable, dnoisfrtw.exe. In
addition, Real-Time Workshop created a build directory,
dnoisfrtw_c6000_rtw.

To review the contents of the working directory after the build, type the dir
command from the MATLAB Command Window.

dir
. dnoisfrtw.exe dnoisfrtw_c6000_rtw
.. dnoisfrtw.mdl

5 To run the executable from the MATLAB Command Window, type

!dnoisfrtw

The “!” character passes the command that follows it to the operating
system, which runs the stand-alone dnoisfrtw program.

The program produces one line of output.

starting the model

6 To see the contents of the build directory, type

dir dnoisfrtw_c6701_rtw

tic6000.book Page 131 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-132

Contents of the Build Directory
The build process creates a build directory and names it model_target_rtw,
concatenating the name of your source model and your chosen target. In this
example, your build directory is named dnoisfrtw_c6701_rtw.

dnoisfrtw_c6701_rtw contains these generated source code files:

• dnoisfrtw.c—the stand-alone C code that implements the model.

• dnoisfrtw.h—an include header file containing information about the state
variables

• dnoisfrtw_export.h—an include header file containing information about
exported signals and parameters

The build directory also contains other files used in the build process, such as
the object (.obj) files and the generated makefile (dnoisfrtw.mk).

tic6000.book Page 132 Monday, February 6, 2006 10:39 AM

Targeting Your C6711 DSK and Other Hardware

2-133

Targeting Your C6711 DSK and Other Hardware
The Embedded Target for TI C6000 DSP for Texas Instruments DSP lets you
use Real-Time Workshop to generate, target, and execute Simulink models on
the Texas Instruments (TI) C6711 DSP Starter Kit (C6711 DSK). In
combination with the C6711 DSK, your Embedded Target for TI C6000 DSP
software is the ideal resource for rapidly prototyping and developing embedded
systems applications for the TI C6711 Digital Signal Processor. The Embedded
Target for TI C6000 DSP software focuses on developing real-time digital
signal processing (DSP) applications for the C6711 DSK.

This chapter describes how to use the Embedded Target for TI C6000 DSP to
create and execute applications on the C6711 DSK. To use the targeting
software, you should be familiar with using Simulink to create models and with
the basic concepts of Real-time Workshop automatic code generation. To read
more about Real-Time Workshop, refer to your Real-Time Workshop
documentation.

In this chapter, you will find sections that detail how to use your Embedded
Target for TI C6000 DSP to build and download DSP applications in Simulink
to your C6711 DSK and to Texas Instruments Code Composer Studio (CCS):

• Configuring your Embedded Target for TI C6000 DSP software, in
“Real-Time Workshop Options for C6000 Hardware” on page 2-69

• Configuring your Texas Instruments TMS320C6711 DSP Starter Kit, in
“Configuring Your C6711 DSK” on page 2-133

• Testing your hardware and software installation to be sure everything
works, in “Confirming Your C6711 DSK Installation” on page 2-133 and
“Testing Your C6711 DSK” on page 2-134

Configuring Your C6711 DSK
After you install and configure your C6711 DSK according to the instructions
in the online help for CCS, you do not need to configure further your
C6711 DSK.

Confirming Your C6711 DSK Installation
Texas Instruments supplies a test utility to verify operation of the board and
its associated software. For complete information about running the test utility

tic6000.book Page 133 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-134

and interpreting the results, refer to your “TMS320CDSK Help” under
TMS320C6000 Code Composer Studio Help in the CCS online help system.

To run the C6711 DSK confidence test, complete the following steps after you
install and configure your board.

1 Open a DOS command window.

2 Access the directory \..\ti\c6000\dsk6x11\conftest

CCS creates this directory when you install your CCS software. It contains
the files to run the C6711 confidence test.

3 Start the confidence test by typing dsk6xtst at the DOS prompt.

By default, the test utility creates a log file named dsk6xtst.log where it
stores the test results. To specify the name and location of a log file to
contain the results of the confidence test, use the CCS command line options
to run the confidence utility. For further information about running the
confidence test from a DOS window and using the command line options,
refer to the “DSK Confidence Test” topic in the online help for CCS.

4 Review the test results to verify that everything works.

If your confidence test fails, reconfigure your C6711 DSK. After you change
your board configuration, rerun the confidence utility to check your new
settings.

Testing Your C6711 DSK
The Embedded Target for TI C6000 DSP includes a Simulink demonstration
model called c6711dsktest. You can use this model to verify that you installed
your C6711 DSK hardware and your Embedded Target for TI C6000 DSP
software correctly and the board settings are suitable for targeting. The
demonstration model presets the Real-Time Workshop settings to build and
run the model on your board.

To run the model you need a signal generator, an oscilloscope, and audio cables
to connect the signal generator and scope to your C6711 DSK. Refer to your
CCS documentation for more information on connecting sources and scopes to
your C6711 DSK. In addition, you should connect your signal generator to the
oscilloscope input so you can display the source and output signals together.

tic6000.book Page 134 Monday, February 6, 2006 10:39 AM

Targeting Your C6711 DSK and Other Hardware

2-135

To Test the Operation of Your C6711 DSK
As a test to verify that your Embedded Target for TI C6000 DSP software and
C6711 DSK are installed and operating correctly, open and build the Simulink
model c6711dsktest. Test model c6711dsktest appears in the figure below.

1 Enter c6711dsktest at the MATLAB command prompt.

Test model c6711dsktest opens in Simulink.

2 Select Simulation -> Configuration Parameters from the menu bar.

The next figure shows the model c6711dsktest with Configuration
Parameters selected.

Type Ctrl+B to build
and execute model

on C6711 DSK

DSP

Sine Wave

Reset
C6711 DSK

Modulator

Line Out
C6711 DSK

DAC

Line In
C6711 DSK

ADC

tic6000.book Page 135 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-136

3 Click Real-Time Workshop in the Select tree on the Configuration
Parameters dialog to view the Real-Time Workshop options.

4 Click Build to run the model. Building the model provides a comprehensive
test of the build, download, and run processes in the Embedded Target for
TI C6000 DSP.

Real-Time Workshop returns a lengthy series of messages in the Command
Window, starting with

Starting Real-Time Workshop build procedure for model:
c6711dsktest.mdl
Invoking Target Language Compiler on c6711dsktest.rtw

If c6711dsktest.mdl builds, compiles, and downloads to the C6711 DSK
successfully, the following message strings appear at the end of the build
process messages.

tic6000.book Page 136 Monday, February 6, 2006 10:39 AM

Targeting Your C6711 DSK and Other Hardware

2-137

C6x DSK Command Line COFF Loader Utility, Version 1.20a
Copyright (c) 1998 by DNA Enterprises, Inc.
Found board type:DSK6x Revision:0
Using DSP memory map 1.
Downloaded:c6711dsktest.out
Successful completion of Real-Time Workshop build procedure
for model:c6711dsktest

When you receive this message, your model is running on the C6711 DSK. You
should be able to see the input and output on your oscilloscope. When you
change the input, the output should change as well.

Try increasing the frequency you send to the C6711 DSK and watching to see
that the output changes to match by changing the amplitude modulation.

Error Messages While Building c6711dsktest
If you receive an error message from the build and compile process, your board
or the software may not be configured correctly. Reinstall the board and review
the configurations listed in section “Configuring Your C6711 DSK” on
page 2-133. You need to resolve errors that appear in this build before you start
to develop and build your own models.

Note that after you build and download the model to the board, the build
process runs the downloaded code on the C6711 DSK immediately.

Verifying That c6711dsktest Is Running
To see that the model is running, turn on your signal generator and set the
output to produce a sine wave at 8000 Hz. Set your oscilloscope to display both
the input signal from the signal generator and the output from the C6711 DSK.
On the oscilloscope display, you should see the sine wave input from the signal
generator, and the amplitude-modulated sine wave output from the C6711
DSK. If you change the frequency of the sine wave input, you should see the
change on the oscilloscope in the input and output traces.

Starting and Stopping c6711dsktest on the C6711 DSK
When you build and download the model c6711dsktest.mdl to your
C6711 DSK, you are not running a simulation of the model. You are running
the actual machine code, in real time, corresponding to the block diagram in
c6711dsktest.mdl. To run c6711dsktest.mdl on your C6711 DSK, open the
Simulink model and click Build on the Real-Time Workshop pane to rebuild

tic6000.book Page 137 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-138

the machine executable and download the new executable to the board.
Building and downloading the new executable starts the process running on
the C6711 DSK.

Once your application is running on your target, stop the process by one of the
following methods:

• Using the Debug -> Halt option in CCS.

• Using halt from the MATLAB command prompt.

• Clicking the C6711 DSK Reset block in your model (if you added one) or in
the C6711 DSK Board Support library.

Running Models on Your C6711 DSK
Texas Instruments markets a complete set of tools for use with the C6711 DSK.
These tools are primarily intended for rapid prototyping of control systems and
hardware-in-the-loop applications.

This section provides a brief example of how the TI development tools work
with Real-Time Workshop, the Embedded Target for TI C6000 DSP, and the
C6711 DSK Board Support block library.

Executing code generated from Real-Time Workshop on a particular target in
real-time requires target-specific code. Target-specific code includes I/O device
drivers and an interrupt service routine.

Other components, such as a communication link with Simulink, are required
if you need the ability to download parameters on-the-fly to your target
hardware.

Since these components are specific to particular hardware targets (in this
case, the C6711 DSK), you must ensure that the target-specific components are
compatible with the target hardware.

To allow you to build an executable, the Embedded Target for TI C6000 DSP
provides a target makefile specific to C6000 hardware targets. This target
makefile invokes the optimizing compiler provided as part of CCS.

Used in combination with the Embedded Target for TI C6000 DSP and
Real-Time Workshop, TI products provide an integrated development
environment that, once installed, needs no additional coding.

tic6000.book Page 138 Monday, February 6, 2006 10:39 AM

Targeting Your C6711 DSK and Other Hardware

2-139

After you have installed the C6711 DSK development board and supporting TI
products on your PC, start MATLAB. At the MATLAB command prompt, type
c6711dsklib. This opens a Simulink block library, c6711dsklib, that includes
a set of blocks for C6711 DSK I/O devices:

• C6711 DSK ADC—configures the analog to digital converter

• C6711 DSK DAC—configures the digital to analog converter

• C6711 DSK LED—controls the user-defined light emitting diodes (LED) on
the C6711 DSK

• C6711 DSK DIP Switch—lets you set the dual inline pin switches on the
C6711 DSK

• C6711 EVM Reset—resets the processor on the C6711 DSK

These devices are associated with your C6711 DSK board.

With your model open, select Simulation -> Configuration Parameters from
the menu bar to open the Configuration Parameters dialog. From this dialog,
click Real-Time Workshop on the select tree. You must specify the appropriate
versions of the system target file and template makefile. For the C6711 DSK,
in the Real-Time Workshop pane of the dialog, specify

• System target file—ti_c6000.tlc

• Template makefile—ti_c6000.tmf

With this configuration, you can generate and download a real-time executable
to your TI C6711 DSK. Start the Real-Time Workshop build process by clicking
Build on the Real-Time Workshop pane. Real-Time Workshop automatically
generates C code and inserts the I/O device drivers as specified by the ADC and
DAC blocks in your block model.

These device drivers are inserted in the generated C code as inlined
S-functions. Inlined S-functions offer speed advantages and simplify the
generated code. For more information about inlining S-functions, refer to your
Target Language Compiler documentation. For a complete discussion of
S-functions, refer to your documentation about writing S-functions.

During the same build operation, the template makefile and block parameter
dialog entries are combined to form the target makefile for your TI evaluation
module. This makefile invokes the TI compiler to build an executable file.

tic6000.book Page 139 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-140

If you select the Build_and_execute option, the executable file is automatically
downloaded via the peripheral component interface (PCI) bus to the TI
evaluation board. After downloading the executable file to the C6711 DSK, the
build process runs the file on the digital signal processor.

Starting and Stopping DSP Applications on the C6711 DSK
When you create, build, and download a Simulink model to the C6701 EVM,
you are not running a simulation of your DSP application. You are running the
actual machine code corresponding to the block diagram you built in Simulink.
To start running your DSP application on the evaluation module, you must
open your Simulink model and rebuild the machine executable by clicking
Build on the Real-Time Workshop pane. Each time you want to start the
application on the C6711 DSK, you use Real-Time Workshop to rebuild the
executable from the Simulink model and download the code to the board.

Your model runs until the model encounters one of the following actions:

• Using the Debug -> Halt option in CCS

• Using halt from the MATLAB command prompt

• Encountering a Stop block in the model.

• Clicking the C6711 DSK Reset block in your model (if you added one) or in
the DSK block library

Clicking the Reset block stops the running application and restores the digital
signal processor to its initial state.

Note When you build and execute a model on your C6711 DSK, the
Real-Time Workshop build process resets the DSK automatically. You do not
need to reset the board before building models. Use the C6711 DSK Reset
block to stop processes that are running on your C6711 DSK, or to return your
board to a known state for any reason.

tic6000.book Page 140 Monday, February 6, 2006 10:39 AM

C6711 DSK Tutorial 2-3—Single Rate Application

2-141

C6711 DSK Tutorial 2-3—Single Rate Application
In this tutorial you create and build a model that simulates audio
reverberation applied to an input signal. Reverberation is similar to the echo
effect you can hear when you shout across an open valley or canyon, or in a
large empty room.

You can choose to create the Simulink model for this tutorial from blocks in the
Signal Processing Blockset and Simulink block libraries, or you can find the
model in the Embedded Target for TI C6000 DSP demos. For this example, we
show the model as it appears in the demonstration program. The
demonstration model name is c6711dskafxr.mdl and is shown in the next
figure. Open this model by typing c6711dskafxr at the MATLAB prompt.

To run this model you need a microphone connected to the Mic In connector on
your C6711 DSK and speakers and an oscilloscope connected to the Line Out
connector on your C6711 DSK. To test the model, speak into the microphone
and listen to the output from the speakers. You can observe the output on the
oscilloscope as well.

To download and run your model to your C6711 DSK, you complete the
following tasks:

1 Use Simulink blocks and blocks from other blocksets to create your model
application.

2 Add the Embedded Target for TI C6000 DSP blocks that let your signal
sources and output devices communicate with your C6711 DSK—the C6711
DSK ADC and C6711 DSK DAC blocks that you find in the Embedded
Target for TI C6000 DSP C6711 DSK Board Support library.

3 Add the C6711 DSK target preferences block from the C6000 Target
Preferences library to your model. Verify and set the block parameters for
your hardware. In most cases, the default settings work fine.

If you are using a C6711 simulator target, select Simulator on the Board
info pane of the target preferences block.

tic6000.book Page 141 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-142

4 Set the configuration parameters for your model, including

- Configuration Parameters such as simulation start and stop time and
solver options.

- Real-Time Workshop options such as target configuration and target
compiler selection.

5 Build your model to the selected target.

6 Test your model running on the target by changing the input to the target
and observing the output from the target.

Your target for this tutorial is your C6711 DSK installed on your PC. Be sure
to configure and test your board as directed in “Configuring Your C6711 DSK”
on page 2-133.

Building the Audio Reverberation Model
To build the model for audio reverberation, follow these steps:

1 Open Simulink.

2 Create a new model by selecting File -> New -> Model from the Simulink
menu bar.

3 Use Simulink blocks to create the following model.

tic6000.book Page 142 Monday, February 6, 2006 10:39 AM

C6711 DSK Tutorial 2-3—Single Rate Application

2-143

Look for the Integer Delay block in the Signal Operations library of Signal
Processing Blockset. You do not need to add the input and output signal
lines at this time. When you add the C6711 DSK blocks in the next section,
you add the input and output to the sum blocks.

4 Save your model with a suitable name before continuing.

Adding C6711 DSK Blocks to Your Model
So that you can send signals to your C6711 DSK and get signals back, TI C6000
includes a block library that contains five blocks designed to work with the
codec and LEDs on your C6711 DSK:

• Input block (C6711 DSK ADC)

• Output block (C6711 DSK DAC)

• Light emitting diode block (C6711 DSK LED)

tic6000.book Page 143 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-144

• DIP switch block (C6711 DIP Switch)

• Reset block (Reset C6711 DSK)

Type c6711dsklib at the MATLAB prompt to bring up this window showing
the library contents.

These blocks are included in the Embedded Target for TI C6000 DSP c6000lib
blockset in the Simulink Library browser.

The C6711 DSK ADC and C6711 DSK DAC blocks let you configure the codec
on the C6711 DSK to accept input signals from the input connectors on the
board, and send the model output to the output connector on the board.
Essentially, the C6711 DSK ADC and C6711 DSK DAC blocks add driver
software that controls the behavior of the codec for your model.

To add an input to the your model without using a C6711 DSK ADC block, add
a DSP source block, such as a signal generator, that creates the discrete time
signal you need and use that signal as the input to your model.

To add C6711 DSK target blocks to your model, follow these steps:

tic6000.book Page 144 Monday, February 6, 2006 10:39 AM

C6711 DSK Tutorial 2-3—Single Rate Application

2-145

1 Double-click Embedded Target for TI C6000 DSP in the Simulink Library
browser to display the C6000lib blockset.

2 Double-click C6711 DSK Board Support to view the C6711 DSK blocks.

3 Drag and drop C6711 DSK ADC and C6711 DSK DAC blocks to your model
as shown in the figure.

4 Connect new signal lines as shown in the figure.

5 Finally, from the TI C6000 Target Preferences block library, add the
C6711DSK target preferences block. This block is not connected to any other
block in the model.

Configuring the Embedded Target for TI C6000 DSP Blocks
To configure the C6711 DSK blocks in your model, follow these steps:

1 Click the C6711 DSK ADC block to select it.

2 Select Block Parameters from the Simulink Edit menu.

3 Set the following parameters for the block:

- Select the +20 dB mic gain boost check box

- For Output data type, select Double from the list

- Set Scaling to Normalize

z
−1800

Integer Delay

0.8

Feedback Gain

.9

Delay Mix

Line Out
C6711 DSK

DAC

DAC

C6711DSK

Mic In
C6711 DSK

ADC

ADC

tic6000.book Page 145 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-146

- Set Source gain to 0.0

- Enter 64 for Samples per frame

Include a signal path running from the input directly to the output in your
model so you can display both the input signal and the modified output
signal on the oscilloscope for comparison.

4 For ADC source, select Mic In.

5 Click OK to close the Block Parameters: ADC dialog.

6 Now set the options for the C6711 DSK DAC block.

- Set Scaling to Normalize

- For DAC attenuation, enter 0.0

- Set Overflow mode to Saturate.

7 Click OK to close the dialog.

8 Click the C6711DSK target preferences block.

9 Select Block Parameters from the Simulink Edit menu.

10 Verify the parameter settings for the C6711 DSK target. The figures below
show the proper values.

tic6000.book Page 146 Monday, February 6, 2006 10:39 AM

C6711 DSK Tutorial 2-3—Single Rate Application

2-147

Board info Settings

tic6000.book Page 147 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-148

Memory Settings

tic6000.book Page 148 Monday, February 6, 2006 10:39 AM

C6711 DSK Tutorial 2-3—Single Rate Application

2-149

Section Settings

You have completed the model. Now configure the Real-Time Workshop
simulation options to build and download your new model to your C6711 DSK.

Setting Configuration Parameters for Your Model
The following sections describe how to build and run your real-time digital
signal processing model on your C6711 DSK. Running the model on the target
starts with configuring and building your model from the Configuration
Parameters dialog in Simulink.

tic6000.book Page 149 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-150

Setting Simulink Configuration Parameters
After you have designed and implemented your digital signal processing model
in Simulink, complete the following steps to set the configuration parameters
for the model:

1 Open the Configuration Parameters dialog, select Solver on the Select
tree, and set the appropriate options on the Solver pane for your model and
for the target.

- Set Start time to 0.0 and Stop time to inf (model runs without stopping).
Note that the generated code ignores the stop time value.

- Under Solver options, select the fixed-step and discrete settings from
the lists.

- Set the Fixed step size to auto and select Single Tasking for the Tasking
mode.

Ignore the other general categories, such as Diagnostics or
Data Import/Export, in the Select tree in the Configuration Parameters
dialog. The default settings are correct for your new model.

Setting Real-Time Workshop Target Build Options
To configure Real-Time Workshop to use the correct target files and to compile
and run the model executable, you set the options on the Real-Time Workshop
pane of the Configuration Parameters dialog. Follow these steps to set the
Real-Time Workshop options to target your C6711 DSK for running your
model:

1 Click the Real-Time Workshop category in the Select tree.

2 In the Target Selections options, click Browse to select the system target
file for the C6000 hardware targets.

3 On the System Target File Browser, select the system target file
ti_c6000.tlc and click OK to close the browser.

Real-Time Workshop fills the Template makefile and Make command
options with the appropriate files based on your system target file selection.

4 Now, change the category again to TI C6000 Compiler/Linker to set the
Real-Time Workshop compile and link options.

tic6000.book Page 150 Monday, February 6, 2006 10:39 AM

C6711 DSK Tutorial 2-3—Single Rate Application

2-151

5 Set the following options in the Compiler options:

- Set Compiler verbosity to Quiet.

- Select the Symbolic debugging check box.

6 Set a Linker option by selecting the Retain .obj files check box.

7 Change categories on the Select tree to TI C6000 Code Generation.

8 Set the following run-time options:

- Build action: Build_and_execute.

- Overrun action: Notify_and_halt.

- Overrun notification method: Turn_on_LEDs.

You have configured the Real-Time Workshop options that let you target your
C6711 DSK. Notice that you did not configure a number of Real-Time
Workshop options on the Select tree: Comments, Symbols, Custom Code,
Interface, and Debug. In addition, running this model does not require you to
set all the Embedded Target for TI C6000 DSP specific options. For most of
those, default values work fine.

For your model in this tutorial, the default values for options in these
categories are appropriate. For other models you develop, you may want to set
the options in these categories and others in the Select tree to provide
information during the build and to launch target languange compiler (TLC)
debugging when you generate code.

Building and Executing Your Model on Your C6711 DSK
After you set the configuration parameters and configured Real-Time
Workshop to create the files you need, you direct Real-Time Workshop to build,
download, and run your model executable on your target:

1 Switch to the Real-Time Workshop category in the Configuration
Parameters dialog. Clear Generate code only and click Build to generate
and build an executable targeted to the C6711 DSK.

When you click Build with the Build_and_execute option selected, the
automatic build process creates the executable file that can be run by the
C6711 DSP on the C6711 DSK, and then downloads and runs the executable
file on your target.

tic6000.book Page 151 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-152

2 Stop model execution by one of the following methods:

- Using the Debug -> Halt option in CCS.

- Using halt from the MATLAB command prompt.

- Clicking the C6711 DSK Reset block in your model (if you added one) or in
the DSK Block library.

Testing Your Audio Reverb Model
With your model running on your C6711 DSK, speak into the microphone you
connected to the board. The model should generate a reverberation effect out of
the speakers, delaying and echoing the words you speak into the mike. If you
built the model yourself, rather than using the supplied model c6711dskafxr,
try running the demonstration model to compare the results.

tic6000.book Page 152 Monday, February 6, 2006 10:39 AM

C6711 DSK Tutorial 2-4—A More Complex Application

2-153

C6711 DSK Tutorial 2-4—A More Complex Application
For this tutorial, we demonstrate an application that uses multiple stages—
using wavelets to remove noise from a noisy signal. The model name is
c6711dskwdnoisf. As with any model file, you can run this denoising
demonstration by typing c6711dskwdnoisf at the MATLAB prompt.

The model also appears in the MATLAB demos collection in the Embedded
Target for TI C6000 entry under the Simulink heading. Here is a picture of the
model as it appears in the demonstration library.

Unlike the audio reverberation tutorial model used in tutorial 2-3, this model
is difficult to build from blocks in Simulink. It uses complicated subsystems for
the Delay Alignment block and the Soft Threshold block. For this tutorial you
work with a copy of the demonstration model, rather than creating the model.

This tutorial takes you through generating C code and building an executable
program from the demonstration model. The resulting program runs on your
C6711 DSK as an executable COFF file.

Working and Build Directories
It is convenient to work with a local copy of the c6711dskwdnoisf model, stored
in its own directory, that you name (something like c6711dskwdnoisfex). This

tic6000.book Page 153 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-154

discussion assumes that the c6711dskwdnoisf directory resides on drive d:.
Use a different drive letter if necessary for your machine. Set up your working
directory as follows:

1 Create your new model directory from the MATLAB command line by typing

!mkdir d:\c6711dskwdnoisfex (on PC)

2 Make c6711dskwdnoisfex your working directory in MATLAB.

cd d:/c6711dskwdnoisfex

3 Open the c6711dskwdnoisf model.

c6711dskwdnoisf

The model appears in the Simulink window.

4 From the File menu, choose Save As. Save a copy of the c6711dskwdnoisf
model as d:/c6711dskwdnoisfex/dnoisfrtw.mdl.

During code generation, Real-Time Workshop creates a build directory within
your working directory. The build directory name is model_target_rtw,
derived from the name of your source model and your chosen target. In the
build directory, Real-Time Workshop stores generated source code and other
files created during the build process. You examine the contents of the build
directory at the end of this tutorial.

Setting Simulink Configuration Parameters
To generate code correctly from the dnoisfrtw model, you must change some
of the configuration parameters. In particular, Real-Time Workshop uses a
fixed-step solver. To set the parameters, use the Configuration Parameters
dialog as follows:

1 From the Simulation menu, choose Configuration Parameters. The
Configuration Parameters dialog opens.

tic6000.book Page 154 Monday, February 6, 2006 10:39 AM

C6711 DSK Tutorial 2-4—A More Complex Application

2-155

2 Click Solver on the Select tree and enter the following parameter values on
the Solver pane. Embedded Target for TI C6000 DSP ignores the stop time
setting—the model runs continuously until you stop it.

Start Time: 0.0

Stop Time: inf

Solver options: set Type to Fixed-step. Select the discrete solver
algorithm.

Fixed step size: auto

Tasking mode: Auto

3 Click Apply. Then click OK to close the dialog.

4 Save the model. Configuration parameters persist with your model (as the
configuration set) for you to use in future sessions.

The next figure shows the Solver pane with the correct parameter settings.

tic6000.book Page 155 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-156

Selecting the Target Configuration
To specify the desired target configuration, you choose a system target file,
which specifies the appropriate template makefile, and make command.

In these tutorials, you do not need to specify these parameters individually.
Instead, you use the ready-to-run ti_c6000.tlc target configuration.

Note The Real-Time Workshop category has several subcategories, which
you select using the Select tree. During this tutorial you change or review
options on many categories in the tree.

To select the C6000 target:

1 From the Simulation menu, choose Configuration Parameters. The
Configuration Parameters dialog opens.

tic6000.book Page 156 Monday, February 6, 2006 10:39 AM

C6711 DSK Tutorial 2-4—A More Complex Application

2-157

2 Click Real-Time Workshop on the Select Tree of the Configuration
Parameters dialog. The Real-Time Workshop pane activates.

3 Click Browse next to the System target file field. This opens the System
Target File Browser. The browser displays a list of available target
configurations. When you select a target configuration, Real-Time
Workshop automatically chooses the appropriate System target file,
Template makefile, and Make command.

tic6000.book Page 157 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-158

4 From the list of available configurations, select ti_c6000.tlc shown above
and click OK.

The Real-time Workshop pane now displays the correct System target file
(ti_c6000.tlc), Template makefile (ti_c6000.tmf), and Make command
(make_rtw), as shown in the previous figure.

5 Select Optimization from the categories. The options displayed here are
common to all target configurations. Check to make sure that all options are
set to their defaults, as below.

tic6000.book Page 158 Monday, February 6, 2006 10:39 AM

C6711 DSK Tutorial 2-4—A More Complex Application

2-159

6 Select Debug from the Select tree. Clear all the check boxes in this pane. You
can select the Verbose build option to see more build messages. Selecting
Verbose build is optional but it can be helpful when you are new to
generating code.

7 Select TI C6000 Compiler/Linker from the categories listed in the tree. The
options displayed here are specific to the C6711 DSK target. Verify that the
options are set as shown below.

tic6000.book Page 159 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-160

.

8 Set the Linker options as shown.

9 On the Select tree, choose TI C6000 Code Generation. Set the run-time
options as shown under Runtime.

tic6000.book Page 160 Monday, February 6, 2006 10:39 AM

C6711 DSK Tutorial 2-4—A More Complex Application

2-161

10 Click OK to close the Configuration Parameters dialog. Save the model to
retain your new build settings.

Building and Running Your Model
The Real-Time Workshop build process generates C code from the model, and
then compiles and links the generated program.

To build and run the program:

1 Access the configuration parameters for your model.

tic6000.book Page 161 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-162

2 Clear Generate code only and click Build on the Real-Time Workshop pane
of the Configuration Parameters dialog to start the build process.

3 A number of messages concerning code generation and compilation appear
in the MATLAB Command Window. The initial messages are

Starting Real-Time Workshop build procedure for model:
dnoisfrtw
Generating code into build directory: .\dnoisfrtw_c6000_rtw

The content of the succeeding messages depends on your compiler and
operating system.The final message is

Successful completion of Real-Time Workshop build procedure
for model: dnoisfrtw

4 The working directory now contains an executable, dnoisfrtw.exe. In
addition, Real-Time Workshop created a build directory,
dnoisfrtw_c6000_rtw.

To review the contents of the working directory after the build, type dir at
the MATLAB command prompt.

dir
. dnoisfrtw.exe dnoisfrtw_c6000_rtw
.. dnoisfrtw.mdl

5 To run the executable from the MATLAB Command Window, type

!dnoisfrtw

The “!” character passes the command that follows it to the operating
system, which runs the stand-alone dnoisfrtw program.

The program produces one line of output.

starting the model

6 To see the contents of the build directory, type

dir dnoisfrtw_c6000_rtw

tic6000.book Page 162 Monday, February 6, 2006 10:39 AM

C6711 DSK Tutorial 2-4—A More Complex Application

2-163

Contents of the Build Directory
The build process creates a build directory and names it
modelname_target_rtw, concatenating the name of your source model and your
chosen target. In this example, your build directory is named
dnoisfrtw_c6000_rtw.

dnoisfrtw_c6000_rtw contains these generated source code files:

• dnoisfrtw.c—the stand-alone C code that implements the model

• dnoisfrtw.h—an include header file containing information about the state
variables

• dnoisfrtw_export.h—an include header file containing information about
exported signals and parameters

The build directory also contains other files used or generated in the build
process, such as the object (.obj) files, the command file (.cmd), and the
generated makefile (dnoisfrtw.mk).

tic6000.book Page 163 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-164

Creating Code Composer Studio Projects Without Building
Rather than targeting your C6000 board when you build your signal processing
application, you can create Texas Instruments Code Composer Studio (CCS)
projects. Creating projects for CCS lets you use the tools provided by the CCS
software suite to debug your real-time process.

If you build and download your Simulink model to CCS, the Embedded Target
for TI C6000 DSP opens Code Composer Studio, creates a new CCS project
named for your model, and populates the new project with all the files it creates
during the build process—the object code files, the assembly language files, the
map files, and any other necessary files. As a result, you can immediately use
CCS to debug your model using the features provided by CCS.

Creating a project in CCS is the same as targeting C6000 hardware. You
configure your target options, select your build action to create a CCS project,
and then build the project in CCS by clicking Make Project.

To Create Projects in CCS Without Loading Files to Your Target
From the Select tree in the Configuration Parameters dialog, select TI C6000
Code Generation. Select Create_CCS_Project for the Build action, as shown
in the next figure. Note that the Build and Build_and_execute options create
CCS projects as well. The Generate_code_only option does not create a CCS
project. None of the other options has an effect here. Ignore them when you are
creating a project in CCS rather than generating code.

tic6000.book Page 164 Monday, February 6, 2006 10:39 AM

Creating Code Composer Studio Projects Without Building

2-165

After you select Create_CCS_Project, set the options for the Compiler and
Linker categories on the TI C6000 Compiler/Linker category on the Select
tree.

Return to the Real-Time Workshop category, clear Generate code only and
click Build to build your new CCS project.

Real-Time Workshop and the Embedded Target for TI C6000 DSP generate all
the files for your project in CCS and create a new project in the IDE. Your new
project is named for the model you built, with a custom project build
configuration custom_MW, not Release or Debug.

In CCS you see your project with the files in place in the directory tree.

tic6000.book Page 165 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-166

Targeting Custom Hardware
As long as the processor on your custom board is from the TI C6000 DSP family,
you can use Embedded Target for TI C6000 DSP to generate code for your
target.

Note that the blocks for the peripherals in the C6000 DSP Library, such as the
C6701 EVM ADC or C6711 DSK DAC blocks, are specific to their hardware and
will not work with your custom board. None of the board-specific blocks
provided by this toolbox work with custom hardware. However, the RTDX and
core support blocks should work for standard processors.

Custom hardware targeting currently supports all C6000 processors through
target preferences blocks, either specific to the processor, or a general custom
preferences block:

Target Preferences Block Description

Custom C6000 Provides access to the hardware set up for
targeting any C6000 processor-based board.
Note that it does not set any default values.
When you add this block to a model, you must
set all the options on each available pane—
board information, memory mapping, and
section layout.

C6416DSK Sets default values for targeting the C6416
DSK. After you add this block to your model,
you can modify the default values as you
require. Parameters in this block are set to
match the board attributes.

C6701EVM Sets default values for targeting the C6701
EVM. After you add this block to your model,
you can modify the default values as you
require. Parameters in this block are set to
match the board attributes.

tic6000.book Page 166 Monday, February 6, 2006 10:39 AM

Targeting Custom Hardware

2-167

These target preferences blocks provide a direct way for you to target boards
that are not specifically supported. Due to certain features related to memory
maps and other processor-specific attributes, custom hardware targeting only
works with the C6000 DSPs.

Several guidelines affect your targeting configuration decisions when you
decide to use custom targets and the custom target preferences block:

1 Specify the memory allocation (memory mapping) using the Memory and
Sections panes on the C6000 Target Preferences dialog. Set the memory
mapping for your target that best matches your hardware. For example, if
your custom target uses the C6713 processor, be sure your memory
configuration is the same as the one on the supported C6713 DSK, such as
has the same memory size, the same EMF settings, the same memory
sections, and the same cache organization.

2 To use on-chip memory only for your target, choose the
Near_Calls_and_Data setting for the Memory model in the TI C6000
compiler options. To use external memory that is specific to your board,
choose the Far_Calls_and_Data setting for the Memory model. The other

C6711DSK Sets default values for targeting the C6711
DSK. After you add this block to your model,
you can modify the default values as you
require. Parameters in this block are set to
match the board attributes.

C6713DSK Sets default values for targeting the C6713
DSK. After you add this block to your model,
you can modify the default values as you
require. Parameters in this block are set to
match the board attributes.

DM642EVM Sets default values for targeting the DM642
EVM. After you add this block to your model,
you can modify the default values as you
require. Parameters in this block are set to
match the board attributes.

Target Preferences Block Description

tic6000.book Page 167 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-168

selections in the Memory model list offer a combination of near and far
allocation for calls, data, and aggregate data.

3 Do not use the existing ADC, DAC, DIP Switch, or LED blocks unless you
are quite sure that your hardware is identical to the appropriate EVM or
DSK in all important respects. Generally, the ADC, DAC, and other
target-specific blocks are design specifically for their designated targets and
can cause problems when you use them on hardware that is not identical.

4 Set the Overrun notification method in the TI C6000 runtime category to
Print_message when you use the overrun notification feature. If you choose
to use the LED notification option, verify that on your specialized target you
access the LEDs in exactly the same way, and the LEDs respond in the same
way, as the LEDs on the corresponding supported DSK or EVM.

To use one of the custom targets, create your model, add and configure the
Custom C6000 target preferences block, and then open the Configuration
Parameters dialog for the model.

Typical Targeting Process
Generally, targeting hardware, or a development environment as it is called by
some, requires that you complete a series of processes that starts with building
your model and ends with generating code to suit your target.

1 Build the Simulink model of your algorithm or process to be converted to
code for your target.

2 Add target-specific blocks to your model, such as ADC and DAC blocks, and
configure the block parameters. (Skip this step when you are targeting a
processor on a custom board.)

3 Add a target preferences block to your model. Select the block that best
matches your target: one of the device-specific blocks, like C6711DSK or the
Custom C6000 block when none of the specific blocks is appropriate. All
models that you target to C6000-processor-based must have a target
preferences block at the top level of the model.

4 Configure the options on the target preferences block to select the target,
map memory segments, allocate code and data sections to the memory
segments, and other set other target-specific options.

tic6000.book Page 168 Monday, February 6, 2006 10:39 AM

Targeting Custom Hardware

2-169

5 Set the Simulink configuration parameters for your model. Notice that you
do this after you add the target preferences block to your model.

6 Build your model to your target.

About Memory Maps
Memory maps are an essential part of targeting any processor or board.
Without the map, the code generation process cannot determine where various
features of the generated code, such as variables, data, and executable code,
reside on the target.

To discuss memory maps and configuring memory, a few terms need to be
defined:

• Memory map— Map of the memory space for a target system. The memory
space is partitioned into functional blocks.

• memory segment—Memory partition that corresponds to a physical range of
memory on the target. The segment is named in some fashion, such as
IPRAM or SDRAM.

• Memory section—the smallest unit of an object file. This is a block of data or
code that, based on the memory map, resides in an area of contiguous
memory on the target and in the memory map. Sections of object files are
both distinct and separate. Memory sections come in two flavors:

- Uninitialized sections that reserve memory space for uninitialized data.
One example of an uninitialized section is .bss. The .bss section reserves
space for variables that are not initialized.

- Initialized sections contain code and data. .text (containing executable
code) and .data (containing initialized data) are initialized sections.

• Memory management—process of specifying the memory segments that the
various memory sections use for your application. A logical memory map of
the hardware memory results from the process of managing memory.

During code generation, the linker and assembler work to allocate your code
and data into the memory on your target according to the memory map
specifications you provide. For more information about memory utilization and
memory management, refer to the online help for CCS, using keywords like
memory map, memory segment, and section. Note that the compiler does not
interact with the memory map. It makes no assumptions about memory
allocation and is not aware of the memory map. As far as the C6000 compiler

tic6000.book Page 169 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-170

is concerned, the physical memory on your target is one continuous linear block
of memory that is subdivided into smaller blocks containing code and/or data.

When you configure the block parameters for the Custom C6000 target
preferences block, you are setting up the memory map for your target. You
specify the memory segments that are defined and the contents of each
segment. You specify the sections, both named and default, and the segments
to which the sections are assigned.

These memory management functions are identical to the ones available in the
Configuration Tool in CCS.

To Target a Custom C6000 Target
To use a board that has a TI C6000 processor but is not one of the supported
boards, use the Custom C6000 target preferences block by adding it to your
model. Configuring the block parameters tell Simulink, Embedded Target for
TI C6000 DSP, and Real-Time Workshop about your target processor and how
to generate code that will run on the target.

1 After you add the Custom C6000 target preferences block to your model,
open the block by selecting Edit->Open Block from the model menu bar.
This step opens the C6000 Target Preferences dialog, containing default
values for all options. In the next steps you change the options to specify
features of your target processor and board.

2 Click Board Info to access the board information pane shown here.

tic6000.book Page 170 Monday, February 6, 2006 10:39 AM

Targeting Custom Hardware

2-171

3 For Board type, enter Custom to tell the system you are targeting a board
that Embedded Target for TI C6000 DSP does not explicitly support.

4 Select your target processor from the Device list. Most of the C6000 family
of DSP processors are on the list. If the one you need is not listed, pick one
that closely matches your target.

5 Set the actual CPU clock rate for the CPU on your target in CPU clock speed
(MHz). Report the clock speed of the processor on your target. When you
enter a value, you are not changing the CPU clock rate, you are reporting
the actual rate. If the value you enter does not match the rate on the target,
your model real-time results might be wrong, and code profiling results will

tic6000.book Page 171 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-172

not be correct. You must enter the actual clock rate the board uses. The rate
you enter here does not change the rate on the board. Setting CPU clock
speed to the actual board rate allows the code you generate to run correctly
according to the actual clock rate of the hardware.

6 If your target is a simulator rather than a hardware target, select
Simulator.

7 To enable high-speed RTDX, meaning that you are using a high-speed RTDX
emulator or your hardware configuration supports high-speed RTDX, select
Enable High Speed RTDX.

8 To enable Embedded Target for TI C6000 DSP to connect to CCS, select your
target from the CCS board name list. On this list you see the names of the
boards you have configured in the CCS Setup Utility. If your target board
does not appear on the list, start CCS Setup and add your board to the
System Configuration dialog.

9 Select the processor to target from the CCS processor name list. For the
board you selected in CCS board name, CCS processor name lists all the
processors on the board. The list comes from the processors you added to the
board in the CCS Setup Utility.

Now you have completed the process of identifying your target to Embedded
Target for TI C6000 DSP and Real-Time Workshop. While this process is
necessary, it represents only one small part of enabling you to generate code to
run on your custom board.

Perhaps the most important part of targeting custom hardware is providing
the memory map configuration for your target to the linker and assembler.

Memory and Sections panes on the C6000 Target Preferences dialog provide
the controls required to specify how the linker and assembler arrange the code,
data, and variables on your target.

Here are the Memory and Sections panes with the default values for all
options.

tic6000.book Page 172 Monday, February 6, 2006 10:39 AM

Targeting Custom Hardware

2-173

Memory Pane

tic6000.book Page 173 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-174

Sections Pane

The information that follows describes the options on the panes in detail.

The Memory pane contains memory options in three areas:

• Physical Memory specifies the mapping for processor memory

• Heap specifies whether you use a heap and determines the size in words

• L2 Cache enables the L2 cache (where available) and sets the size in kB

Be aware that these options can affect the options on the Sections pane. You
can make selections here that change how you configure options on the
Sections pane.

tic6000.book Page 174 Monday, February 6, 2006 10:39 AM

Targeting Custom Hardware

2-175

Most of the information about memory segments and memory allocation is
available from the online help system for Code Composer Studio.

Physical Memory Options
This list shows the physical memory segments available on the board and
processor. By default, target preferences blocks show the memory segments
found on the selected processor. In addition, the Memory pane on
preconfigured target preferences blocks shows the memory segments available
on the board, but off of the processor. Target preferences blocks set default
starting addresses, lengths, and contents of the default memory segments.

The default memory segments for each processor and board are different. For
example:

• Custom boards based on C670x processors provide IPRAM and IDRAM
memory segments by default.

• C6701 EVM boards provide IPRAM, IDRAM, SBSRAM, SDDRAM0, and
SDRAM1 memory segments by default

• C6711DSK boards provide SDRAM memory segment by default

Name
When you highlight an entry on the Physical memory list, the name of the
entry appears here. To change the name of the existing memory segment, select
it in the Physical memory list and then type the new name here.

Note You cannot change the names of default processor memory segments.

To add a new physical memory segment to the list, click Add, replace the
temporary label in Name with the one to use, and press Return. Your new
segment appears on the list.

After you add the segment, you can configure the starting address, length, and
contents for the new segment. New segments start with code and data as the
type of content that can be stored in the segment (refer to the Contents option).

Names are case sensitive. NewSegment is not the same as newsegment or
newSegment.

tic6000.book Page 175 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-176

Address
Address reports the starting address for the memory segment showing in
Name. Address entries are in hexadecimal format and limited only by the
board or processor memory.

When you are using a processor-specific preferences block, the starting address
shown is the default value. You can change the starting value by entering the
new value directly in Address when you select the memory segment to change.

Length
From the starting address, Length sets the length of the memory allocated to
the segment in Name. As in all memory entries, specify the length in
hexadecimal format, in minimum addressable data units (MADUs). For the
C6000 processor family, the MADU is 8 bytes, one word.

When you are using a processor-specific preferences block, the length shown is
the default value. You can change the value by entering the new value directly
in this option.

Contents
Contents describes the kind of program sections that you can store in the
memory segment in Name. As the processor type for the target preferences
block changes, the kinds of information you store in listed memory segments
can change. Generally, the Contents list contains these strings:

• Code—Allow code to be stored in the memory segment in Name.

• Data—Allow data to be stored in the memory segment in Name.

• Code and Data—Allow code and data to be stored in the memory segment in
Name. When you add a new memory segment, this is the default setting for
the contents of the new element.

You can add or use as many segments of each type as you need, within the
limits of the memory on your processor.

Add
Click Add to add a new memory segment to the target memory map. When you
click Add, a new segment name appears, for example NEWMEM1, in Name and on
the Physical memory list. In Name, change the temporary name NEWMEM1 by

tic6000.book Page 176 Monday, February 6, 2006 10:39 AM

Targeting Custom Hardware

2-177

entering the new segment name. Entering the new name, or clicking Apply
updates the temporary name on the list to the name you enter.

Remove
This option lets you remove a memory segment from the memory map. Select
the segment to remove in the Physical memory list and click Remove to delete
the segment.

Create Heap
If your processor supports using a heap, as do the C6711 or C6701, for example,
selecting this option enables creating the heap and enables the Heap size
option. Create heap is not available on processors that either do not provide
a heap or do not allow you to configure the heap.

Using this option you can create a heap in any memory segment on the
Physical memory list. Select the memory segment on the list and then select
Create heap to create a heap in the select segment. After you create the heap,
use the Heap size and Define label options to configure the heap.

The location of the heap in the memory segment is not under your control. The
only way to control the location of the heap in a segment is to make the segment
and the heap the same size. Otherwise, the compiler determines the location of
the heap in the segment.

Heap Size
After you select Create heap, this option lets you specify the size of the heap
in words. Enter the number of words in decimal format. When you enter the
heap size in decimal words, the system converts the decimal value to
hexadecimal format. You can enter the value directly in hexadecimal format as
well. Processors may support different maximum heap sizes.

Define Label
Selecting Create heap enables this option that allows you to name the heap.
Enter your label for the heap in the Heap label option.

Heap Label
Selecting Define label enables this option. You use Heap Label to provide the
label for the heap. Any combination of characters is accepted for the label
except reserved characters in C/C++ compilers.

tic6000.book Page 177 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-178

Enable L2 Cache
C621x, C671x, and C641x processors support an L2 cache memory structure
that you can configure as SRAM and partial cache. Both the data memory and
the program share this second-level memory. C620x DSPs do not support L2
cache memory, and this option is not available when you choose one of the
C620x processors as your target.

If your processor supports the two-level memory scheme, this option enables
the L2 cache on the processor.

L2 Cache Size
Once you enable the L2 cache, select the size of the cache from the list.

Sections Pane
Options on this pane let you specify where various program sections should go
in memory. Program sections are distinct from memory segments—sections
are portions of the executable code stored in contiguous memory locations.
Among the sections used generally are .text, .bss, .data, and .stack. Some
sections relate to the compiler, some to DSP/BIOS, and some can be custom
sections as you require.

For more information about program sections and objects, refer to the CCS
online help. Most of the definitions and descriptions in this section come from
CCS.

tic6000.book Page 178 Monday, February 6, 2006 10:39 AM

Targeting Custom Hardware

2-179

Within this pane, you configure the allocation of sections for Compiler,
DSP/BIOS, and Custom needs.

tic6000.book Page 179 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-180

Here are brief definitions of the various kinds of sections in the lists. All
sections do not appear on both lists. The list on which the string appears is
shown in the table.

String Section List Description of the Section Contents

.args DSP/BIOS Argument buffers

.bss Compiler Static and global C variables in the code

.bios DSP/BIOS DSP/BIOS code if you are using DSP/BIOS
options in your program

.cinit Compiler Tables for initializing global and static
variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier and
string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global, defined as
far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS startup
initialization tables section

.hwi DSP/BIOS Dispatch code for interrupt service routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the target
program can read

.pinit Compiler Load allocation of the table of global object
constructors section.

.rtdx_text DSP/BIOS Code sections for the RTDX program
modules

.stack Compiler The global stack

tic6000.book Page 180 Monday, February 6, 2006 10:39 AM

Targeting Custom Hardware

2-181

You can learn more about memory sections and objects in your Code Composer
Studio online help. Most of the definitions and descriptions in this section come
from the online help for CCS.

Compiler Sections
During program compilation, the C6000 compiler produces both uninitialized
and initialized blocks of data and code. These blocks are allocated into memory
as required by the configuration of your system. On the Compiler Sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections. The initialized
sections are

• .cinit
• .const
• .switch

• .text—Created by the assembler

These sections are uninitialized:

• .bss—Created by the assemble.
• .far
• .stack

.switch Compiler Jump tables for switch statements in the
executable code

.sysdata DSP/BIOS Data about DSP/BIOS

.sysinit DSP/BIOS DSP/BIOS initialization startup code

.sysmem Compiler Dynamically allocated object in the code
containing the heap

.text Compiler Load allocation for the literal strings,
executable code, and compiler generated
constants

.trcdata DSP/BIOS TRC mask variable and its initial value
section load allocation

String Section List Description of the Section Contents

tic6000.book Page 181 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-182

• .sysmem

Other sections appear on the list as well:

• .data—created by the assembler. The C/C++ compiler does not use this
section.

• .cio
• .pinit

When you highlight a section on the list, Description shows a brief description
of the section. Also, Placement shows you where the section is currently
allocated in memory.

Description
Provides a brief explanation of the contents of the selected entry in the
Compiler Sections list.

Placement
Shows you where the selected Compiler Sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments as defined in
the physical memory map on the Memory pane. Select one of the listed memory
segments to allocate the highlighted compiler section to the segment.

DSP/BIOS Sections
During program compilation, DSP/BIOS produces both uninitialized and
initialized blocks of data and code. These blocks get allocated into memory as
required by the configuration of your system. On the DSP/BIOS sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections.

Description
Provides a brief explanation of the contents of the selected DSP/BIOS Sections
list entry.

Placement
Shows where the selected DSP/BIOS Sections list entry is allocated in
memory. You change the memory allocation by selecting a different location

tic6000.book Page 182 Monday, February 6, 2006 10:39 AM

Targeting Custom Hardware

2-183

from the Placement list. The list contains the memory segments available on
C6000 processors, and changes based on the processor you are using.

DSP/BIOS Object Placement
Distinct from the entries on the DSP/BIOS Sections list, DSP/BIOS objects
like STS or LOG, if your project uses them, are placed in the memory segment
you select from the DSP/BIOS Object Placement list. All DSP/BIOS objects
use the same memory segment. You cannot select the locations for individual
objects.

Custom Sections
When your program uses code or data sections that are not included in either
the Compiler Sections or DSP/BIOS Sections lists, you add the new sections
to this list. Initially, the Custom Sections list contains no fixed entries, just a
placeholder for a section for you to define.

Name
You enter the name for your new section here. To add a new section, click Add.
Then replace the temporary name with the name to use. Although the
temporary name includes a period at the beginning, you do not need to include
the period in your new name. Names are case sensitive. NewSection is not the
same as newsection, or newSection.

Placement
With your new section added to the Name list, select the memory segment to
which to add your new section. Within the restrictions imposed by the
hardware and compiler, you can select any segment that appears on the list.

Add
Clicking Add lets you configure a new entry to the list of custom sections. When
you click Add, the block provides a new temporary name in Name. Enter the
new section name to add the section to the Custom Sections list. After typing
the new name, click Apply to add the new section to the list. Or click OK to add
the section to the list and close the dialog.

Remove
To remove a section from the Custom Sections list, select the section to remove
and click Remove. The selected section disappears from the list.

tic6000.book Page 183 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-184

To Create Memory Maps for Targets
Although each processor has memory map requirements, the C6000 DSP
family of processors share some memory features and not others. Details of the
memory sections and segments, as well as memory allocations and limitations
for each processor, are provided in your documentation for CCS and from TI.

To manage the memory on your processor, set the options within these panes
to specify the memory allocation to use. Recall that the memory map is the
result of the settings you provide for the options in the Memory and Sections
panes in the C6000 Target Preferences dialog.

Unfortunately, each processor has different needs, and the differences make it
impossible to provide details about how you set the options for your target. You
determine, from your model and code

• What memory segments you require

• Which sections you need and where

• Whether you need custom memory segments and sections

• Where to begin each memory segment and how much memory to allot to each
segment

• Any other information that you need to set the options on the Memory and
Sections panes?

Once you have configured the options in the C6000 Target Preferences dialog,
you are ready to set the Simulink configuration parameters for your model and
generate code.

tic6000.book Page 184 Monday, February 6, 2006 10:39 AM

Using Embedded Target for TI C6000 DSP with Real-Time Workshop Embedded Coder

2-185

Using Embedded Target for TI C6000 DSP with Real-Time
Workshop Embedded Coder

To take advantage of Embedded Coder features, you must migrate your models
to a system target file called ti_c6000_ert.tlc. This target is based on the
embedded real-time target (ERT) used by Embedded Coder. Other TI C6000
target files are based on the generic real-time target (GRT).

To use Embedded Coder with the Embedded Target for TI C6000 DSP
Platform, you must choose the system target file ti_c6000_ert.tlc, available
in the System Target File Browser. If you already have a model with code
generation options configured for the target ti_c6000.tlc, Embedded Target
for TI C6000 DSP provide a special utility function switchc6000target to
migrate the model instead.

If you simply choose the system target file ti_c6000_ert.tlc in the System
Target File Browser directly to change the target for the model, all the
TI C6000 code generation options are reset to default values by the switch. The
C6000-specific options are the same between the two system target files.

You can set your model to use this system target file the usual way, via the
System Target File Browser, available from the Real-Time Workshop pane
in the Configuration Parameters dialog. However, when you use the system
target browser to switch your model between the ERT- and GRT-based TI
C6000 system target files, the TI C6000-specific options (the configuration set)
for the model are reset to default values.

To preserve the option values in the configuration set when you migrate your
model to the ERT-based target (or back to the GRT-based target), use the
function switchc6000target.m.

For example, the command

switchc6000target(bdroot,'ti_c6000_ert.tlc')

entered at the MATLAB prompt sets your current Simulink model to use the
desired system target file—ti_c6000_ert.tlc—while preserving the TI C6000
Real-Time Workshop options.

Conversely,

switchc6000target(bdroot,'ti_c6000.tlc')

sets your model to use the generic real-time (GRT)-based target.

tic6000.book Page 185 Monday, February 6, 2006 10:39 AM

2 Targeting C6000 DSP Hardware

2-186

To Use the Embedded Coder Target File
For setting up a new model to use the ERT-based target .tlc file.

1 From your model menu bar, select Simulation—>Configuration
Parameters.

2 Click Real-Time Workshop on the Select tree to access the Real-Time
Workshop options.

3 Click Browse to open the System Target File Browser.

4 On the System Target File Browser, find and select the file
ti_c6000_ert.tlc.

5 Click OK.

For changing a model that uses the GRT-based target ti_c6000.tlc to use the
ERT-based target.

1 Open your Simulink model to change.

2 At the MATLAB prompt, enter

switchc6000target(gcs,'ti_c6000_ert.tlc')

Now the current model uses the ERT-based target and the configuration set
that you developed for the GRT-based target.

When you return to the Configuration Parameters dialog and check the
Real-Time Workshop system target file entry in the Real-Time Workshop
pane, you see ti_c6000_ert.tlc. And the rest of the configuration options are
unchanged.

tic6000.book Page 186 Monday, February 6, 2006 10:39 AM

3
Targeting with
DSP/BIOS Options

Introducing DSP/BIOS (p. 3-2) Introduces DSP/BIOS from Texas Instruments.

DSP/BIOS and Targeting Your TI C6000 DSP
(p. 3-3)

Discusses the concepts and files used by
Embedded Target for TI C6000 DSP in
DSP/BIOS projects.

Profiling Generated Code (p. 3-10) Demonstrates how to set up and use profiling in
your generated code.

Using DSP/BIOS with Your Target Application
(p. 3-22)

Shows you how to add DSP/ BIOS features to
your projects when you generate code.

tic6000.book Page 1 Monday, February 6, 2006 10:39 AM

3 Targeting with DSP/BIOS Options

3-2

Introducing DSP/BIOS
The Embedded Target for TI C6000 DSP supports DSP/BIOS™ features as
options when you generate code for your target. In the sections that follow, you
can read more about what DSP/ BIOS is, how the Embedded Target for TI
C6000 DSP incorporates the DSP/BIOS features into your generated code, and
some ways you might use the real-time operating system (RTOS) features of
DSP/BIOS in your application. Follow these links for more information on
specific areas that interest you, or read on for more details.

• “DSP/BIOS and Targeting Your TI C6000 DSP” on page 3-3

• “Code Generation with DSP/BIOS” on page 3-6

• “Profiling Generated Code” on page 3-10

• “Using DSP/BIOS with Your Target Application” on page 3-22

As a part of the Texas Instruments eXpressDSP™ technology, TI designed
DSP/BIOS to include three components:

• DSP/BIOS Real-Time Analysis Tools—use these tools and windows within
Code Composer Studio™ to view your program as it executes on the target in
real-time.

• DSP/BIOS Configuration Tool—enables you to add and configure any and all
DSP/BIOS objects that you use to instrument your application. Use this tool
to configure interrupt schedules and handlers, set thread priorities, and
configure the memory layout on your DSP.

• DSP/BIOS Application Program Interface (API)—lets you use C or assembly
language functions to access and configure DSP/BIOS functions by calling
any of over 150 API functions. The Embedded Target for TI C6000 DSP uses
the API to let you access DSP/BIOS from MATLAB.

You link these components into your application, directly or indirectly
referencing only functions you need for your application to run efficiently and
optimally. Only functions that you specifically reference become part of you
code base. Others are not included to avoid adding unused code to your project.
In addition, after you add one or more functions from DSP/BIOS, the
configuration tool help you disable feature you do not need later, letting you
optimize your program for speed and size.

For details about DSP/BIOS and what it can do for your applications, refer to
your CCS and DSP/BIOS documentation from Texas Instruments.

tic6000.book Page 2 Monday, February 6, 2006 10:39 AM

DSP/BIOS and Targeting Your TI C6000 DSP

3-3

DSP/BIOS and Targeting Your TI C6000 DSP
When you use Real-Time Workshop to generate code from the Simulink model
of your digital signal processing application, you can choose to include the
DSP/BIOS features provided by the Embedded Target for TI C6000 DSP in
your generated code.

By electing to include DSP/BIOS in your generated project, the Embedded
Target for TI C6000 DSP adds a DSP/BIOS configuration file (with the
filename modelname.cdb) to your project, and adds the following files as well:

• modelnamecfg.s62—contains the DSP/BIOS objects required by your
application and the vector table for the hardware interrupts.

• modelnamecfg.h62—the header file for modelnamecfg.s62.

• modelnamecfg.h—model configuration header file.

• modelnamecfg_c.c—source code for the model.

• modelnamecfg.cmd—the linker command file for the project. Adds the
required DSP/BIOS libraries and the library RTS6201.lib, or the run-time
support library for your target.

The executable code and source code you generate when you use the DSP/BIOS
option are not the same as the code generated without DSP/BIOS included.

Rather than having you incorporate the DSP/BIOS files manually when you
create your application, as you would if you used CCS alone, or another text
editor, the Embedded Target for TI C6000 DSP starts from your Simulink
model and adds the DSP/BIOS files automatically. As it adds the files it

• Configures the DSP/BIOS configuration file for your model needs

• Sets up the objects you need to analyze your program while it runs on your
target

• Handles memory mapping to optimize your code based on the blocks in your
model

DSP/BIOS Configuration File
DSP/BIOS projects all have a file with the extension .cdb. The file contains the
DSP/BIOS configuration information for your project, in the form of objects for
instrumenting and scheduling tasks in the program code. Included in any
DSP/BIOS project might be

tic6000.book Page 3 Monday, February 6, 2006 10:39 AM

3 Targeting with DSP/BIOS Options

3-4

• Log (LOG) objects for logging events and messages (replace the *printf
statements, for instance)

• Statistics (STS) objects for tracking the performance of your code

• A clock (CLK) object for configuring the clock on your target, and various
memory functions

• Hardware and software interrupt (HWI, SWI) objects that control program
execution

• Other objects you use to meet your needs

Your TI DSP/BIOS documentation can provide all the details about the objects
and how to use them. In addition, your installed software from TI includes
tutorials to introduce you to using DSP/BIOS in projects.

Not all of the DSP/BIOS objects get used by the code you generate from the
Embedded Target for TI C6000 DSP. In the next sections, you learn about
which objects the Embedded Target uses and how. Of course, you can still add
more objects to your code through CCS. Note, however, that if you add
additional DSP/BIOS objects beyond those provided by the Embedded Target
for TI C6000 DSP, you lose your additions when you regenerate your code from
your Simulink model.

Memory Mapping
Memory mapping that takes place in the linker command file now appears in
the MEM object in the DSP/BIOS configuration file. Your memory sections, such
as the DATA_MEM assignments and definitions, move to the MEM object, as do
the memory segments. After completing this conversion, the memory
assignment portions of your non-DSP/BIOS linker command file are not
necessary in the linker command file.

Hardware Interrupt Vector Table
In non-DSP/BIOS project, the assembly language file vector.asm in your
project defines the hardware interrupt vector table. This file defines which
interrupts your project uses and what each one does.

When you choose to use DSP/BIOS capabilities, the interrupts defined in the
vector table move to the Hardware Interrupt Service Routine Manager in the
CCS Configuration Tool. With all of your interrupts now defined as Hardware

tic6000.book Page 4 Monday, February 6, 2006 10:39 AM

DSP/BIOS and Targeting Your TI C6000 DSP

3-5

Interrupts (HWI) in the Configuration Tool, your project does not need
vector.asm so the file does not appear in your DSP/BIOS enabled projects.

Linker Command File
After migrating your memory sections and segment, and your hardware
interrupt vector table to the configuration file, building with the DSP/BIOS
option creates a compound linker command file. Since DSP/BIOS allows only
one command file per project, and your linker file may comprise command
options that did not relocate the DSP/BIOS configuration, Embedded Target
for TI C6000 DSP uses compound command files. Compound command files
work to let your project use more than one command file.

By starting your original linker command file with the statement

"-lmodelnamecfg.cmd"

added as the first line in the file, your DSP/BIOS enabled project uses both your
original linker command file and the DSP/BIOS command file. You get the
features provide by DSP/BIOS as well as the custom command directives you
need.

tic6000.book Page 5 Monday, February 6, 2006 10:39 AM

3 Targeting with DSP/BIOS Options

3-6

Code Generation with DSP/BIOS
While generating code that includes the DSP/BIOS options is straightforward
using the Incorporate DSP/BIOS option in the TIC6000 code generation
options, changes occur between code that does not include DSP/BIOS and code
that does. Two things change when you generate code with DSP/BIOS—files
are added and removed from the project in CCS, and DSP/BIOS objects become
part of your generated code. With these in place, you can use the DSP/BIOS
features in CCS to debug your project, as well as use the profiling option in
Embedded Target for TI C6000 DSP to check the performance of your
application running on your target.

Generated Code Without and With DSP/BIOS
The next two figures show the results of generating code without and with the
DSP/BIOS option enabled in the Simulation Parameters dialog.

Example—c6711dskwdnoisf.pjt code Generated Without DSP/BIOS
When you create your project in CCS, the directory structure looks like this.

tic6000.book Page 6 Monday, February 6, 2006 10:39 AM

Code Generation with DSP/BIOS

3-7

Example—c6711dskwdnoisf.pjt Code Including DSP/BIOS
If you now create a new project that includes DSP/BIOS, the directory
structure for your project changes to look like the following figure.

tic6000.book Page 7 Monday, February 6, 2006 10:39 AM

3 Targeting with DSP/BIOS Options

3-8

Notice that the new directory includes some new files, shown in the next table.

Added File Description

modelname.cdb Contains the DSP/BIOS objects required by your
application, and the vector table for the hardware
interrupts

modelnamecfg.s62 Shows all the included files in your project, the
variables, the DSP/BIOS objects, and more in this
file generated from the .cdb file

tic6000.book Page 8 Monday, February 6, 2006 10:39 AM

Code Generation with DSP/BIOS

3-9

With DSP/BIOS functions enabled for your project, the following files no longer
appear in your project.

When you investigate your generated code, notice that the function main
portion of modelname_main.c includes different code when you generate
DSP/BIOS-enabled source code, and modelname_main.c incorporates one or
more new functions.

modelnamecfg.h62 The header file for modelnamecfg.s62

modelnamecfg.h Model configuration header file

modelnamecfg_c.c Source code for the model

modelnamecfg.cmd The linker command file for the project. Adds the
required DSP/BIOS libraries and the library
RTS6201.lib or the run-time support library for
your target.

Filename Description

vectors.asm Defines the hardware interrupts (HWI) used by
interrupt service routines on the processor. This
file is removed after all of the hardware interrupts
appear in the HWI section of the Configuration
Tool.

Original linker
command file—
modelname.cmd

Assigns memory sections on the processor. This file
is removed if the SECTION directive is empty
because all of the section assignments moved to the
configuration file. Otherwise, include call to the
DSP/BIOS command file.

Some *.lib files Provide access to libraries for the processor, and
peripherals. These files are removed if their
contents have been incorporated in the new
compound linker command file.

Added File Description

tic6000.book Page 9 Monday, February 6, 2006 10:39 AM

3 Targeting with DSP/BIOS Options

3-10

Profiling Generated Code
When you use the Embedded Target for TI C6000 DSP to generate code that
incorporates the DSP/BIOS options, you can easily profile your generated code
to gauge performance and find bottlenecks. By selecting Profile performance
at atomic subsystem boundaries in the Real-Time Workshop options,
Real-Time Workshop inserts statistics (STS) object instrumentation at the
beginning and end of the code for each atomic subsystem in your model. (For
more about STS objects, refer to your DSP/BIOS documentation from Texas
Instruments.)

After your code has been running for a few seconds on your target, you can
retrieve the profiling results from your target back to MATLAB and display the
information in a custom HTML report.

Code profiling works only on atomic subsystems in your model. To allow
Embedded Target for TI C6000 DSP to profile your model when you build it in
Real-Time Workshop, you convert segments of your model into atomic
subsystems using Create subsystem. By designating subsystems of your
model as atomic, you force each subsystem to execute only when all of its inputs
are available. Waiting for all the subsystem inputs to be available before
running the subsystem allows the subsystem code to be profiled as a contiguous
segment.

To enable the profile feature for your Simulink model, choose
Tools-> Real-Time Workshop -> Options from the model menu bar. Navigate
to the TI C6000 code generation category, and select the
Profile performance at atomic subsystem boundaries check box.

Profiling Subsystems
Nested subsystems are profiled as part of their parent systems—the execution
time reported for the parent subsystem includes the time spent in any profiled
child subsystems. You cannot profile child subsystems separately.

For models that include multiple sample times, one or more subsystems in your
model might not be included in the profiling process. When your model is
configured to use single-tasking mode, all atomic subsystems in your model are
profiled and appear in the report. When your model uses multitasking (refer to
your Real-Time Workshop documentation for more about multitasking models)
profiling applies only to single-rate subsystems that execute at the base rate of
your model. This limitation arises because all of the generated code segments

tic6000.book Page 10 Monday, February 6, 2006 10:39 AM

Profiling Generated Code

3-11

must execute contiguously for the profiling timing measurements to be correct.
Setting the Tasking mode for periodic sample times to Auto in the model
configuration parameters does not guarantee contiguous execution for all code
segments and subsystems.

Notice two things in your code:

• STS objects are added to the generated code

• A generated DSP/BIOS configuration gets added to the project configuration
file

The Embedded Target for TI C6000 DSP inserts and configures these objects
specifically for profiling your code. You do not have to make changes to the STS
objects. To see the statistics objects in use, download your generated
application to your board, select DSP/BIOS -> Statistics View from the menu
bar in CCS, and run the board for a few seconds. You see the statistics being
accumulated by the STS objects.

Profiling Multitasking Systems
For a multitasking system, DSP/BIOS STS objects cannot reliably measure the
time the processor spends in all tasks. When tasks can be preempted by other
tasks (a result of multitasking operation), the profile timing measurements
may be incorrect. For this reason, Embedded Target for TI C6000 DSP includes
profiling instrumentation for atomic systems that run at the base sample rate
only.

When you run the same model in single tasking mode, you can get the timing
measurements for all the systems in your model for one iteration:

1 Select Tools -> Real-Time-Workshop -> Options from the model menu bar.

2 Under Tasking on the Solver pane, select SingleTasking for Tasking
mode for periodic sample times.

3 Rebuild and execute your model on your C6000 hardware.

The program will probably overrun immediately since single tasking mode
requires that all tasks complete within the base sample time which usually
does not happen. However, all systems and subsystems do run once before the
program terminates. This allows you to obtain profiling results for all systems.

tic6000.book Page 11 Monday, February 6, 2006 10:39 AM

3 Targeting with DSP/BIOS Options

3-12

When the overrun occurs, click Halt in CCS to stop DSP/BIOS operation.

Then, enter CCS_Obj.profile('report') at the MATLAB prompt to report
the statistics measurements.

Now you can view the timing measurements for each subsystem. Keep in mind
that the percentages are given relative to the base sample time, so you must do
some arithmetic to figure out whether a given system will fit in its available
time interval. For instance, if your base sample time is 1 second, subsystem A
executes every 3 seconds, the base-rate task takes 0.1 seconds to run, and A
takes 2.5 seconds to run, the system should execute without overruns in
multitasking mode.

Note If you change the overrun action option from its default setting of
Notify and halt to Notify and continue or None, you can get measurements
for multiple iterations of the system. Also, you will be able to request the
profile report without first halting the CPU.

The Profiling Report
To help you to measure subsystem performance, Embedded Target for TI
C6000 DSP provides a custom HTML report that analyzes and displays the
profile statistics. The HTML page shows you the amount of time spent
computing each subsystem, including both Outputs and Update code segments,
and provides links to open the corresponding subsystem in the Simulink model.

To view the profiling report, enter

profile(cc,'report')

at the MATLAB prompt, where cc is the handle to your target and CCS and
report is one of the input arguments for profile.

When you generate the report, Embedded Target for TI C6000 DSP stores the
report in your code generation working directory, something like
modelname.c6000.rtw, with the name profileReport.html.

If MATLAB cannot find your code generation directory, the profile reports is
stored in your temporary directory, tempdir. To locate your temporary
directory, enter

tic6000.book Page 12 Monday, February 6, 2006 10:39 AM

Profiling Generated Code

3-13

tempdir

at the MATLAB command prompt.

Note Each time you run the profiling process, Embedded Target for TI C6000
DSP replaces your existing report with a newer version. To save earlier
reports, rename and save the report before you generate a new one, or change
your destination temporary directory in MATLAB.

You must invoke profile after your Real-Time Workshop build, without
clearing MATLAB memory between operations, so that stored information
about the model is still available to the report generator. If you clear your
MATLAB memory, information required for the profile report gets deleted and
the report does not work properly. When this occurs, and if you have a CCS
project that was previously created with Real-Time Workshop, you must repeat
the Real-Time Workshop build to see the subsystem-based profile analysis in
the report.

Trace each subsystem presented in the profile report back to its corresponding
subsystem in your Simulink model by clicking a link in the report. (The
mapping from Simulink subsystems to generated system code is complex and
thus not detailed here.) Inspect your generated code, particularly modelname.c,
to determine where and how Simulink and Real-Time Workshop implemented
particular subsystems.

Within the generated code, you see entries like the following that define STS
objects used for profiling.

STS_set(&stsSys0_Output, CLK_gethtime());

or

STS_delta(&stsSys0_Output, CLK_gethtime());

This pair of code examples perform the profiling of the code section that lies
between them in modelname.c.

In CCS, STS objects show up in the Statistics Object Manager section under
Instrumentation in the modelname.cdb file. Double-click the file
modelname.cdb in the CCS tree view to open the file and see the sections.

tic6000.book Page 13 Monday, February 6, 2006 10:39 AM

3 Targeting with DSP/BIOS Options

3-14

In some cases, Real-Time Workshop may have pruned unused data paths,
causing related performance measurements to become meaningless. Reusable
system code, or code reuse, where a single function is called from multiple
places in the generated code, can exhibit extra measurements in the profile
statistics, while the duplicate subsystem may not show valid measurements.

Interrupts and Profiling
Although there are STS objects that measure the execution time of the entire
mdlOutputs and mdlUpdate functions, those measurements can be misleading
because they do not include other segments of code that execute at each
interrupt. Statistics for the SWI are used when calculating the headroom (the
difference between the number of CPU cycles your process requires to complete
and the number available for the process to complete, which does not include
the small overhead required for each interrupt. Note that profiling of
multitasking systems does not measure the headroom. In addition,
multitasking profiling does not use the SWI statistics.

To measure most accurately the overall application CPU usage, consider the
DSP/BIOS IDL statistics, which measure time spent not doing application
work. Your DSP/BIOS documentation from TI provides details about the
various DSP/BIOS objects in the cdb file.

The interrupt rate for a DSP/BIOS application created by the Embedded
Target for TI C6000 is the fastest block execution rate in the model. The
interrupt rate is usually, but not always, the same as the codec frame rate.
When there is an upsampling operation or other rate increasing operation in
your model, interrupts are triggered by a timer (PRD) object at the faster rate.
You can determine the effective interrupt rate of the model by inverting the
interrupt interval reported by the profiler.

Reading Your Profile Report
After you have the report from your generated code, you need to interpret the
results. This section provides a link to sample report from a model and explains
each entry in the report.

Sample of a Profile Report
When you click Sample Profile Report, the sample report opens in a new Help
browser window. This opens the sample report in a new window so you can read
the report and the descriptions of the report contents at the same time.

tic6000.book Page 14 Monday, February 6, 2006 10:39 AM

Profiling Generated Code

3-15

Running the model c6711dskwdnoisf with DSP/BIOS generates the sample
profile report. The next sections explain the headings in the report—what they
mean and how they are measured (where that applies).

Report Heading Information
At the beginning of the report, profiling provides the name of the model you
profiled, the target you used, and the date of the report. Since the report
changes each time you run it, the date can be an important means of tracking
model development.

Report Subsections and Contents
Within the body of your profile report, sections report the overall performance
of your generated code and the performance of each atomic subsystem.

STS objects that are associated with subsystem profiling are configured for
host operation at 4*x, reflecting the numerical relationship between CPU clock
cycles and high-resolution timer clicks, x. STS Average, Max, and Total
measurements return their results in counts of instructions or CPU clock
cycles.

Report Heading Description

Timing Constants Shows you the base sample time in your
model (=1/base rate in Hz) and the CPU
clock speed used for the analysis.

Profiled Simulink
Subsystems

Presents the statistics for each profiled
subsystem separately, by subsystem. Each
listing includes the STS object name or
names that instrument the subsystem.

STS Objects Lists every STS object in the generated code
and the statistics for each. DSP/BIOS uses
these objects to determine the CPU load
statistics. For more information about STS
objects, refer to your DSP/BIOS
documentation from TI.

tic6000.book Page 15 Monday, February 6, 2006 10:39 AM

3 Targeting with DSP/BIOS Options

3-16

Definitions of Report Entries
In the following sections, we provide definitions of the entries in the profile
report. These definitions help you decifer the report and better understand how
your process is performing.

System name
Provides the name of the profiled model, using the form targetnameprofile.
targetname is the processor or board assigned as the target, via the target
preferences block.

Number of Iterations Counted
The number of interrupts that occurred between the start of model execution
and the moment the statistics were obtained.

CPU Clock Speed
The instruction cycle speed of your digital signal processor. On the C6701
EVM, you can adjust this speed to one of four values, where 100 MHz is the
default—25, 33.25, 100, 133 MHz. If you change the speed to something other
than the default setting of 100 MHz, you must specify the new speed in the
Real-Time Workshop options. Use the Current C6701EVM CPU clock rate
option on the TIC6000 runtime category on the RTW tab.

Set at a fixed 150 MHz, you cannot change the CPU clock rate on the C6711
DSK. You do not need to report the setting in the Real-Time Workshop options.

Maximum time spent in this subsystem per interrupt
The amount of time spent in the code segment corresponding to the indicated
subsystem in the worst case. Over all the iterations measured, the maximum
time that occurs is reported here. Since the profiler only supports
single-tasking solver mode, no calculation can be preempted by a new
interrupt. All calculations for all subsystems must complete within one
interrupt cycle, even for subsystems that execute less often than the fastest
rate.

Maximum Percent of base interval
The worst-case execution time of the indicated subsystem, reported as a
percentage of the time between interrupts.

tic6000.book Page 16 Monday, February 6, 2006 10:39 AM

Profiling Generated Code

3-17

STS Objects
Profiling uses STS objects to measure the execution time of each atomic
subsystem. STS objects are a feature of the DSP/BIOS run-time analysis tools,
and one STS object can be used to profile exactly one segment of code.
Depending on how Real-Time Workshop generates code for each subsystem,
there may be one or two segments of code for the subsystem; the computation
of outputs and the updating of states can be combined or separate. Each
subsystem is assigned a unique index, i. The name of each STS object helps you
determine the correspondence between subsystems and STS objects. Each STS
object has a name of the form

stsSysi_segment

where i is the subsystem index and segment is Output, Update, or
OutputUpdate. For example, in the sample profile report shown in the next
section, the STS objects have the names stsSys1_OutputUpdate, and
stsSys2_OutputUpdate.

Profiling Your Generated Code
Before profiling your generated code, you must configure your model and
Real-Time Workshop to support the profiling features in Embedded Target for
TI C6000 DSP. Your model must use DSP/BIOS features for profiling to work
fully.

The following tasks compose the process of profiling the code you generate.

1 Enable DSP/BIOS for your code.

2 Enable profiling in the Real-Time Workshop.

3 Create atomic subsystems to profile in your model.

4 Build, download, and run your model.

5 In MATLAB, use profile to view the profile report.

To demonstrate profiling generated code, this procedure uses the wavelet
denoising model c6711dskwdnoisf.mdl that is included with the Embedded
Target for TI C6000 DSP demo programs. If you are using the C6701 EVM as
your target, use the model C6710evmwdnoisf instead throughout this

tic6000.book Page 17 Monday, February 6, 2006 10:39 AM

3 Targeting with DSP/BIOS Options

3-18

procedure. Simulators work as well, just choose the appropriate model for your
simulator.

Begin by loading the model, entering

c6711dskwdnoisf

at the MATLAB prompt. The model opens on your desktop.

To Enable Profiling for Your Generated Code
Recall that you must use DSP/BIOS in you code to use profiling.

1 To enable the profile feature for your Simulink model, select
Tools -> Real-Time Workshop -> Options… from the model menu bar.

The Simulation Parameters dialog opens for you to set the code generation
options for your model.

2 Click Real-Time Workshop to display the configuration panes for setting
your code generation options.

3 From the Category list, select TI C6000 Code Generation.

Your display changes to show the options you set to control code generation
for TI C6000 targets, as shown here.

tic6000.book Page 18 Monday, February 6, 2006 10:39 AM

Profiling Generated Code

3-19

4 Select the Profile performance at atomic subsystem boundaries option.
Selecting this option enables profiling in your generated code. However, you
still need to configure your model to support the profiling process.

To Create Atomic Subsystems for Profiling
Profiling your generated code depends on two features—DSP/BIOS being
enabled and your model having one or more subsystems defined as atomic
subsystems. To learn more about subsystems and atomic subsystems, refer to
your Simulink documentation in the Help browser.

tic6000.book Page 19 Monday, February 6, 2006 10:39 AM

3 Targeting with DSP/BIOS Options

3-20

In this tutorial, you create two atomic subsystems—one from the Analysis
Filter Bank block and a second from the Soft Threshold block:

1 Select the Analysis Filter Bank block. Select Edit -> Create subsystem
from the model menu bar. Note that the name of the block changes to
subsystem. Repeat for the Soft Threshold block.

2 To convert your new subsystems to atomic subsystems, right-click on each
subsystem and choose Subsystem parameters… from the context menu.

3 In the Block Parameters: Subsystem dialog for each subsystem, select the
Treat as atomic unit option. Click OK to close the dialog. If you look closely
you can see that the subsystems now have heavier borders to distinguish
them from the other blocks in your model.

To Build and Profile Your Generated Code
You have enabled profiling in your model and configured two atomic
subsystems in the model as well. Now, use the profiling feature in Embedded
Target for TI C6000 DSP to see how your code runs and check the performance
for bottlenecks and slowdowns as the code runs on your target.

1 Select Tools -> Real-Time Workshop -> Build Model.

If you did not use the RTW options to automate model compiling, linking,
downloading, and executing, perform these tasks using the Project options
in CCS IDE.

Allow the application to run for a few seconds or as long as necessary to
execute the model segments of interest a few times. Then stop the program.

2 Create a link to CCS by entering

cc = ccsdsp;

at the MATLAB prompt.

3 Enter

profile(cc,'report')

at the prompt to generate the profile report of your code executing on your
target.

tic6000.book Page 20 Monday, February 6, 2006 10:39 AM

Profiling Generated Code

3-21

The profile report appears in the Help browser. It should look very much like
the portion of a sample report provided here; your results may differ based on
your target and your settings in the model.

tic6000.book Page 21 Monday, February 6, 2006 10:39 AM

3 Targeting with DSP/BIOS Options

3-22

Using DSP/BIOS with Your Target Application
The Embedded Target for TI C6000 DSP lets you build projects and generate
code with or without DSP/BIOS included.

To Enable DSP/BIOS When You Generate Code
For any code you generate using Real-Time Workshop and the Embedded
Target for TI C6000 DSP, you have the option of including DSP/BIOS features
automatically when you generate the code. Incorporating the features requires
you to select one option in the TI C6000 Code Generation settings—
Incorporate DSP/BIOS.

1 Open the model to use to generate code.

2 From your model menu bar, select Simulation -> Simulation
parameters… to start the Simulation Parameters dialog.

3 From the Category list, select TI C6000 Code Generation.

To provide access to the options, the display changes to show the following
options.

tic6000.book Page 22 Monday, February 6, 2006 10:39 AM

Using DSP/BIOS with Your Target Application

3-23

4 As shown in the figure, select Incorporate DSP/BIOS.

5 Using the other entries on the Category list, set other options as you require
for your project.

6 For the Build action (under Runtime), select one of the following choices.
Each option generates code that includes the DSP/BIOS instrumentation:

- Create_CCS_project
- Build

tic6000.book Page 23 Monday, February 6, 2006 10:39 AM

3 Targeting with DSP/BIOS Options

3-24

- Build_and_execute

Notice that the Generate_code_only option is not on the preceding list.
Using the Generate_code_only option does not generate DSP/BIOS enabled
code.

7 Return to Real-Time Workshop on the Select tree.

8 Click Make Project, Build, or Build & Run to generate code.

tic6000.book Page 24 Monday, February 6, 2006 10:39 AM

4
Using the C62x and C64x
DSP Libraries

About the C62x and C64x
DSP Libraries (p. 4-2)

Introduces the C62x and C64x DSP libraries

Fixed-Point Numbers (p. 4-4) Discusses the representation of fixed-point numbers in
the C62x and C64x DSP libraries

Building Models (p. 4-8) Reviews some issues to consider when you build models
with blocks from the C62x or C64x DSP libraries

tic6000.book Page 1 Monday, February 6, 2006 10:39 AM

4 Using the C62x and C64x DSP Libraries

4-2

About the C62x and C64x DSP Libraries

C62x DSP Library
Blocks in the C62x DSP library correspond to functions in the Texas
Instruments TMS320C62x DSP Library assembly-code library, which target
the TI C62x family of digital signal processors. Use these blocks to run
simulations by building models in Simulink before generating code. Once you
develop your model, you can invoke Real-Time Workshop to generate code that
is optimized to run on the C6711 DSK or C6701 EVM development platforms
or C62x hardware. (Fixed-point processing on C67x hardware is identical to
C62x fixed point hardware and processing so you can develop on the C67x for
the C62x.) During code generation, each C62x DSP Library block in your model
is mapped to its corresponding TMS320C62x DSP Library assembly-code
routine to create target-optimized code.

C62x DSP Library blocks generally input and output fixed-point data types.
Chapter 5, “Block Reference” discusses the data types accepted and produced
by each block in the library. “Fixed-Point Numbers” on page 4-4 gives a brief
overview of using fixed-point data types in Simulink. For an in-depth
discussion of fixed-point data types, including issues with scaling and precision
when you perform fixed-point operations, refer to your Fixed-Point Toolbox
documentation.

You can use C62x DSP Library blocks with certain blocks from the Signal
Processing Blockset and Simulink. To learn more about creating models that
include both C62x DSP Library blocks and blocks from other blocksets, refer to
“Building Models” on page 4-8.

C64x DSP Library
Blocks in the C64x DSP library correspond to functions in the Texas
Instruments TMS320C64x DSP library assembly-code library, which target
the TI C64x family of digital signal processors. Use these blocks to run
simulations by building models in Simulink before generating code. Once you
develop your model, you can invoke Real-Time Workshop to generate code that
is optimized to run on the C6416 DSK development platform or other C64x
hardware. During code generation, each C64x DSP Library block in your model
is mapped to its corresponding TMS320C64x DSP Library assembly-code
routine to create target-optimized code.

tic6000.book Page 2 Monday, February 6, 2006 10:39 AM

About the C62x and C64x DSP Libraries

4-3

C64x DSP Library blocks generally input and output fixed-point data types.
Chapter 5, “Block Reference” discusses the data types accepted and produced
by each block in the library. “Fixed-Point Numbers” on page 4-4 gives a brief
overview of using fixed-point data types in Simulink. For an in-depth
discussion of fixed-point data types, including issues with scaling and precision
when you perform fixed-point operations, refer to your Fixed-Point Toolbox
documentation.

You can use C64x DSP Library blocks with certain certain blocks from the
Signal Processing Blockset and Simulink. To learn more about creating models
that include both C64x DSP Library blocks and blocks from other blocksets,
refer to “Building Models” on page 4-8.

Note While you can use C62x blocks on C64x targets, the generated code is
not optimal for the C64x target. Using the appropriate C64x block creates
better optimized code. (Embedded Target for TIC6000 generates a warning
message when you try to do this but allows you to use the block.)

You cannot use the C64x blocks on your C62x target.

Characteristics Common to C62x and C64x Library
Blocks
The following characteristics are common to all C62x and C64x DSP Library
blocks:

• All blocks inherit sample times from driving blocks.

• The blocks are single rate.

• Block filter weights and coefficients are tunable, but not in real time. Other
block parameters are not tunable.

• All blocks support discrete sample times. Individual block reference pages
indicate blocks that also support continuous sample times.

To learn more about characteristics particular to each block in the library, refer
to Chapter 5, “Block Reference.”

tic6000.book Page 3 Monday, February 6, 2006 10:39 AM

4 Using the C62x and C64x DSP Libraries

4-4

Fixed-Point Numbers
In digital hardware, numbers are stored in binary words. A binary word is a
fixed-length sequence of binary digits (1’s and 0’s). How hardware components
or software functions interpret this sequence of 1’s and 0’s is defined by the
data type.

Binary numbers are represented as either fixed-point or floating-point data
types. A fixed-point data type is characterized by the word size in bits, the
binary point, and whether it is signed or unsigned. The position of the binary
point is the means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a fractional fixed-point number (either
signed or unsigned) is shown below.

where

• is the ith binary digit.

• is the word size in bits.

• is the location of the most significant (highest) bit (MSB).

• is the location of the least significant (lowest) bit (LSB).

• The binary point is shown four places to the left of the LSB. In this example
the number is said to have four fractional bits, or a fraction length of four.

Signed Fixed-Point Numbers
Signed binary fixed-point numbers are typically represented in one of three
ways:

• Sign/magnitude

• One’s complement

• Two’s complement

•
… b0b1bws 2– b5 b3b4 b2bws 1–

MSB LSB

binary point

bi

ws

bws 1–

b0

tic6000.book Page 4 Monday, February 6, 2006 10:39 AM

Fixed-Point Numbers

4-5

Two’s complement is the most common representation of signed fixed-point
numbers and the one TI digital signal processors use.

Negation using signed two’s complement representation consists of a bit
inversion (translation into one’s complement) followed by the binary addition
of a one. For example, the two’s complement of 000101 is 111011:

000101 ->111010 (bit inversion) ->111011 (binary addition of 1 to the LSB)

results in the negative of 000101 being 111011.

Q Format Notation
The position of the binary point in a fixed-point number determines how you
interpret the scaling of the number. When performing arithmetic such as
addition or subtraction, hardware uses the same logic circuits regardless of the
value of the scale factor. In essence, the logic circuits have no knowledge of
a binary point. They perform signed or unsigned integer arithmetic—as if the
binary point is to the right of the LSB (b0). Therefore, you determine the binary
point in your code.

In the the C62x DSP Library, the position of the binary point in signed,
fixed-point data types is expressed in and designated by Q format notation.
This fixed-point notation takes the form

Qm.n

where

• designates that the number is in Q format notation—the Texas
Instruments notation for signed fixed-point numbers.

• is the number of bits used to designate the two’s complement integer
portion of the number.

• is the number of bits used to designate the two’s complement fractional
portion of the number, or the number of bits to the right of the binary point.
Sometimes n is called the scale factor.

Q format always designates the most significant bit of a binary number as the
sign bit. Representing a signed fixed-point data type in Q format requires
m+n+1 bits to account for the sign.

Q

m

n

tic6000.book Page 5 Monday, February 6, 2006 10:39 AM

4 Using the C62x and C64x DSP Libraries

4-6

Example—Q.15
For example, a signed 16-bit number with n = 15 bits to the right of the binary
point is expressed as

Q0.15

in this notation. This is (1 sign bit) + (0 = m integer bits) + (15 = n fractional
bits) = 16 bits total in the data type. In Q format notation the m = 0 is often
implied, as in

Q.15

In the Fixed-Point Toolbox, this data type is expressed as

sfrac16

or

sfix16_En15

The Filter Design Toolbox expresses this data type as the vector

[16 15]

meaning the word length is 16 bits and the fraction length is 15 bits.

Example—Q1.30
Multiplying two Q.15 numbers yields a product that is a signed 32-bit data type
with 30 bits to the right of the binary point. One bit is the designated sign bit,
forcing m to be 1:

m+n+1 = 1+30+1 = 32 bits total

Therefore this number is expressed as

Q1.30

In the Fixed-Point Toolbox, this data type is expressed as

sfix32_En30

In the Filter Design Toolbox, this data type is expressed as

[32 30]

tic6000.book Page 6 Monday, February 6, 2006 10:39 AM

Fixed-Point Numbers

4-7

Example—Q-2.17
Consider a signed 16-bit number with a scaling of 2(-17). This requires n = 17
bits to the right of the binary point, meaning the most significant bit is
a sign-extended bit.

Sign extension adds bits to the high end (MSB end) of the word and fills the
added bits with the value of the MSB. For example, consider a 4-bit two's
complement number 1011. Extending the number to 7 bits with sign extension
changes the number to 1111011—the value of the number remains the same.

One bit is the designated sign bit, forcing m to be -2.

m+n+1 = -2+17+1 = 16 bits total

Therefore this number is expressed as

Q-2.17

In the Fixed-Point Toolbox, this data type is expressed as

sfix16_En17

To express this data type in the Filter Design Toolbox, use

[16 17]

Example—Q17.-2
Consider a signed 16-bit number with a scaling of 2^(2) or 4. The binary point
is implied to be 2 bits to the right of the 16 bits, or that there are n = -2 bits to
the right of the binary point. One bit must be the sign bit, forcing m to be 17.

m+n+1 = 17+(-2)+1 = 16

Therefore this number is expressed as

Q17.-2

In the Fixed-Point Toolbox, this data type is expressed as

sfix16_E2

In the Filter Design Toolbox, this data type is expressed as

[16 -2]

tic6000.book Page 7 Monday, February 6, 2006 10:39 AM

4 Using the C62x and C64x DSP Libraries

4-8

Building Models
You can use C62x or C64x DSP Library blocks in models along with certain
core Simulink and Signal Processing Blockset. This section discusses issues
you should consider when you build models with blocks from these libraries.

Converting Data Types
Any blocks you connect in a model have compatible input and output data
types. In most cases, C62x or C64x DSP Library blocks handle only a limited
number of specific data types. Refer to any block reference page in Chapter 5,
“Block Reference” for a discussion of the data types that each block accept sand
produces.

When you connect C62x or C64x DSP Library blocks and Simulink blocks, you
often need to set the data type and scaling in the block parameters of the
Simulink block to match the data type of the C62x DSP Library block. Many
Simulink blocks allow you to set their data type and scaling by inheriting from
the driving block, or by back propagating from the next block. This can be a
good way to set the data type of a Simulink block to match a connected
C62x DSP Library block.

Some Signal Processing Blockset blocks and Simulink blocks also accept
fixed-point data types. Make the appropriate settings in these blocks’
parameters when you connect them to a C62x DSP Library block.

However, to use Signal Processing Blockset or core Simulink blocks that do not
handle fixed-point data types with C62x DSP Library blocks in your model, you
must use an appropriate data type conversion block:

• To connect fixed-point and nonfixed-point blocks, use the Simulink Data
Type Conversion block in the Data Type library of Simulink.

• To provide an interface to nonfixed-point blocks, use the C62x Convert
Floating-Point to Q.15 and C62x Convert Q.15 to Floating-Point blocks in the
C62x DSP Library.

• To connect blocks of varying nonfixed-point data types in your model, use the
Data Type Conversion block in the Signals and Systems Simulink library

• To connect blocks of varying fixed-point data types in your model, use the
Simulink Data Type Conversion Inherited block in the Data Type library of
Simulink.

tic6000.book Page 8 Monday, February 6, 2006 10:39 AM

Building Models

4-9

Refer to the reference pages for these blocks or invoke the Help system from
their block dialogs for more information.

Using Sources and Sinks
The C62x DSP Library does not include source or sink blocks. Use source or
sink blocks from the core Simulink library or Signal Processing Blockset in
your models with C62x DSP Library blocks. See “Converting Data Types” on
page 4-8 for more information on incorporating blocks from other libraries into
your models.

Choosing Blocks to Optimize Code
In some cases, blocks that perform similar functions appear in more than one
blockset. For example, the C62x DSP Library, the C64x DSP Library, and the
Signal Processing Blockset all have Autocorrelation blocks. How do you choose
which to include in your model? If you are building a model to run on the
C6711 DSK or C6701 EVM, or on C62x hardware, choosing the block from the
C62x DSP Library always yields better optimized code. You can use a similar
block from another library if it provides functionality that the
C62x DSP Library block does not support, but you generate less well optimized
code.

In the same manner, if you are building a model to run on the C6416 DSK or
on C64x hardware, choosing the block from the C64x DSP Library always
yields better optimized code. You can use a similar block from another library
if it provides functionality that the C64x DSP Library block does not support,
but you generate less well optimized code.

tic6000.book Page 9 Monday, February 6, 2006 10:39 AM

4 Using the C62x and C64x DSP Libraries

4-10

tic6000.book Page 10 Monday, February 6, 2006 10:39 AM

5

Block Reference

Blocks — By Category (p. 5-2) Provides tables that list each block in the Embedded
Target for C6000 DSP by category, such as C6701 EVM or
RTDX™

Blocks — Alphabetical List (p. 5-14) Lists each block in the Embedded Target for C6000 DSP
libraries in alphabetical order

tic6000.book Page 1 Monday, February 6, 2006 10:39 AM

5 Block Reference

5-2

Blocks — By Category

Blocks in Target Preferences Library
(c6000tgtprefs)

Block Description

C6416DSK Set target preferences and memory map to generate
code for the C6416 DSP Starter Kit

C6701EVM Set target preferences and memory map to generate
code for the C6701 Evaluation Module

C6711DSK Set target preferences and memory map to generate
code for thet C6711 DSP Starter Kit

C6713DSK Set target preferences and memory map to generate
code for the C6713 DSP Starter Kit

Custom C6000 Set target preferences and memory map to generate
code for C6000-processor-based custom hardware
targets

DM642EVM Set target preferences and memory map to generate
code for the DM642 Evaluation Module

Blocks in C6701 EVM Library (c6701evmlib)
Block Description

C6701 EVM ADC Configure digitized signal output from the codec to
the processor

C6701 EVM DAC Use and configure the codec to convert digital input
to analog output

C6701 EVM DIP
Switch

Simulate or read the three user-defined DIP
switches on the C6701 EVM

tic6000.book Page 2 Monday, February 6, 2006 10:39 AM

Blocks — By Category

5-3

C6701 EVM LED Control the light emitting diodes on the C6701
EVM

C6701 EVM RESET Reset the C6701 Evaluation Module to initial
conditions

Blocks in C6711 DSK Library (c6711dsklib)
Block Description

C6711 DSK
ADC

Configure digitized signal output from the codec to the
processor

C6711 DSK
DAC

Use and configure the codec to convert digital input to
analog output

C6711 DSK DIP
Switch

Simulate or read the three user-defined DIP switches
on the C6711 DSK

C6711 DSK
LED

Control the user-configurable light emitting diodes on
the C6711 DSK

C6711 DSK
RESET

Reset the C6711 DSP Stater Kit to initial conditions

Blocks in C6701 EVM Library (c6701evmlib)
Block Description

tic6000.book Page 3 Monday, February 6, 2006 10:39 AM

5 Block Reference

5-4

Blocks in RTDX Instrumentation Library
(rtdxblocks)

Block Description

From Rtdx Add an RTDX communication channel to your model to
send data from MATLAB to the model running on your
target

To Rtdx Add an RTDX communication channel to your model to
send data from the model running on your target to
MATLAB

Blocks in the C62x DSP Library (tic62dsplib)
Block Description

Conversions

C62x Convert
Floating-Point to Q.15

Convert a single-precision floating-point input
signal to a Q.15 fixed-point signal

C62x Convert Q.15 to
Floating-Point

Convert a Q.15 fixed-point signal to a
single-precision floating-point signal

Filters

C62xComplex FIR Filter a complex input signal using a complex
FIR filter

C62xGeneral Real FIR Filter a real input signal using a real FIR filter

C62xLMS Adaptive
FIR

Perform least-mean-square adaptive FIR
filtering

C62xRadix-4 Real FIR Filter a real input signal using a real FIR filter

C62xRadix-8 Real FIR Filter a real input signal using a real FIR filter

tic6000.book Page 4 Monday, February 6, 2006 10:39 AM

Blocks — By Category

5-5

C62xReal Forward
Lattice All-Pole IIR

Filter a real input signal using an
auto-regressive forward lattice filter

C62xReal IIR Filter a real input signal using a real
auto-regressive moving-average IIR filter

C62xSymmetric Real
FIR

Filter a real input signal using a symmetric real
FIR filter

Math and Matrices

C62xAutocorrelation Compute the autocorrelation of an input vector
or frame-based matrix

C62xBlock Exponent Return the minimum exponent (number of extra
sign bits) found in each channel of an input

C62xMatrix Multiply Perform matrix multiplication on two input
signals

C62xMatrix Transpose Compute the matrix transpose of an input
signal

C62xReciprocal Compute the fractional and exponential
portions of the reciprocal of a real input signal

C62xVector Dot
Product

Compute the vector dot product of two real
input signals

C62xVector Maximum
Index

Compute the zero-based index of the maximum
value element in each channel of an input signal

C62xVector Maximum
Value

Compute the maximum value for each channel
of an input signal

C62xVector Minimum
Value

Compute the minimum value for each channel
of an input signal

C62xVector Multiply Perform element-wise multiplication on two
inputs

Blocks in the C62x DSP Library (tic62dsplib)
Block Description

tic6000.book Page 5 Monday, February 6, 2006 10:39 AM

5 Block Reference

5-6

C62xVector Negate Negate each element of an input signal

C62xVector Sum of
Squares

Compute the sum of squares over each channel
of a real input

C62xWeighted Vector
Sum

Find the weighted sum of two input vectors

Transforms

C62xBit Reverse Bit-reverse the positions of the elements of each
channel of a complex input signal

C62xFFT Compute the decimation-in-frequency forward
FFT of a complex input vector

C62xRadix-2 FFT Compute the radix-2 decimation-in-frequency
forward FFT of a complex input vector

C62xRadix-2 IFFT Compute the radix-2 inverse FFT of a complex
input vector

Blocks in the C64x DSP Library (tic64dsplib)
Block Description

Conversions

C64xConvert
Floating-Point to Q.15

Convert a floating-point signal to a Q.15
fixed-point signal

C64xConvert Q.15 to
Floating-Point

Convert a Q.15 fixed-point signal to a
single-precision floating-point signal

Filters

C64xComplex FIR Filter a complex input signal using a complex
FIR filter

Blocks in the C62x DSP Library (tic62dsplib)
Block Description

tic6000.book Page 6 Monday, February 6, 2006 10:39 AM

Blocks — By Category

5-7

C64xGeneral Real FIR Filter a real input signal using a real FIR filter

C64xLMS Adaptive
FIR

Perform least-mean-square adaptive FIR
filtering

C64xRadix-4 Real FIR Filter a real input signal using a real FIR filter

C64xRadix-8 Real FIR Filter a real input signal using a real FIR filter

C64xReal Forward
Lattice All-Pole IIR

Filter a real input signal using an
auto-regressive forward lattice filter

C64xReal IIR Filter a real input signal using a real
auto-regressive moving-average IIR filter

C64xSymmetric Real
FIR

Filter a real input signal using a symmetric real
FIR filter

Math and Matrices

C64xAutocorrelation Compute the autocorrelation of an input vector
or frame-based matrix

C64xBlock Exponent Return the minimum exponent (number of extra
sign bits) found in each channel of an input

C64xMatrix Multiply Perform matrix multiplication on two input
signals

C64xMatrix Transpose Compute the matrix transpose of an input signal

C64xReciprocal Compute the fractional and exponential portions
of the reciprocal of a real input signal

C64xVector Dot
Product

Compute the vector dot product of two real input
signals

C64xVector Maximum
Index

Compute the zero-based index of the maximum
value element in each channel of an input signal

Blocks in the C64x DSP Library (tic64dsplib)
Block Description

tic6000.book Page 7 Monday, February 6, 2006 10:39 AM

5 Block Reference

5-8

C64xVector Maximum
Value

Compute the maximum value for each channel
of an input signal

C64xVector Minimum
Value

Compute the minimum value for each channel of
an input signal

C64xVector Multiply Perform element-wise multiplication on two
inputs

C64xVector Negate Negate each element of an input signal

C64xVector Sum of
Squares

Compute the sum of squares over each channel
of a real input

C64xWeighted Vector
Sum

Find the weighted sum of two input vectors

Transforms

C64xBit Reverse Bit-reverse the positions of the elements of each
channel of a complex input signal

C64xFFT Compute the decimation-in-frequency forward
FFT of a complex input vector

C64xRadix-2 FFT Compute the radix-2 decimation-in-frequency
forward FFT of a complex input vector

Blocks in the C6416 DSP Library (c6416dsklib)
Block Description

C6416 DSK
ADC

Configure digitized signal output from the codec to the
processor

C6416 DSK
DAC

Use and configure the codec to convert digital input to
analog output

Blocks in the C64x DSP Library (tic64dsplib)
Block Description

tic6000.book Page 8 Monday, February 6, 2006 10:39 AM

Blocks — By Category

5-9

C6416 DSK DIP
Switch

Simulate or read the user-defined DIP switches on the
C6416 DSK

C6416 DSK
LED

Control the user-configurable light emitting diodes on
the C6416 DSK

C6416 DSK
RESET

Reset the C6416 DSP Stater Kit to initial conditions

Blocks in the C6713 DSP Library (c6713dsplib)
Block Description

C6713 DSK
ADC

Configure digitized signal output from the codec to the
processor

C6713 DSK
DAC

Use and configure the codec to convert digital input to
analog output

C6713 DSK DIP
Switch

Simulate or read the user-defined DIP switches on the
C6713 DSK

C6713 DSK
LED

Control the user-configurable light emitting diodes on
the C6713 DSK

C6713 DSK
RESET

Reset the C6713 DSP Starter Kit to initial conditions

Blocks in the C6416 DSP Library (c6416dsklib)
Block Description

tic6000.book Page 9 Monday, February 6, 2006 10:39 AM

5 Block Reference

5-10

DSP Blocks in the DM642 EVM Library
(dm642evmlib)

Block Description

DM642 EVM Audio ADC Configure audio codec and
peripherals on the DM642 Evaluation
Module

DM642 EVM Audio DAC Configure the audio codec to convert
digital audio input to analog audio
output

DM642 EVM FPGA GPIO Read Configure DM642 EVM User GPIO
registers to read from selected pins

DM642 EVM FPGA GPIO Write Configure DM642 EVM User GPIO
registers

DM642 EVM IP Config Configure Internet Protocol (IP)
parameters for DM642 EVM

DM642 EVM LED Control the eight light-emitting
diodes on the DM642 Evaluation
Module

DM642 EVM Reset Reset the DM642 Evaluation Module
to initial conditions

DM642 EVM UDP Receive Configure Ethernet driver to receive
UDP message as uint8 vector

DM642 EVM UDP Send Configure Ethernet driver to send
UDP message

DM642 EVM Video ADC Configure video capture capability
(video decoders) to capture analog
video input on the DM642 Evaluation
Module

tic6000.book Page 10 Monday, February 6, 2006 10:39 AM

Blocks — By Category

5-11

DM642 EVM Video DAC Configure the video display capability
(video encoder) on the DM642
Evaluation Module

DM642 EVM Video Port Configure video port to receive video
data stream from video input port

Blocks in the C6000 DSP Core Support Library
(c6000dspcorelib)

Block Description

CPU Timer Select timer on board and configure periodic
interrupt

From Memory Get data from a specific memory location into
your code running on the C6000 target

Hardware Interrupt Generate Interrupt Service Routine

Idle Task Create free-running task

To Memory Send data from your model running in the
processor to memory on your C6000 target

Block (Continued) Description

tic6000.book Page 11 Monday, February 6, 2006 10:39 AM

5 Block Reference

5-12

Blocks in the Host Communications Library
(hostcommlib)

Blocks in the DSP/BIOS Library (dspbioslib)

Blocks in the TMDX326040A DSP Support Library
(tmdx326040lib)

Block Description

TMDX326040 ADC Configure the codec on the TMDX326040A
daughter card to generate a stream of digital
data to the processor on the C6711 DSK

TMDX326040 DAC Configure the codec on the TMDX326040A
daughter card to send data to the analog output
on the card

Block Description

Byte Pack Convert input signals into uint8 vector

Byte Reversal Reverse order of bytes in input word

Byte Unpack Unpack UDP uint8 input vector into
Simulink data type values

UDP Receive Receive uint8 vector as UDP message

UDP Send Send UDP message to host

Block Description

HWI Generate Interrupt Service Routine

tic6000.book Page 12 Monday, February 6, 2006 10:39 AM

Blocks — By Category

5-13

Task Create task that runs as separate DSP/BIOS
thread

Triggered Task Create asynchronously triggered task

Block Description

tic6000.book Page 13 Monday, February 6, 2006 10:39 AM

5

5-14

Blocks — Alphabetical List 5

The following pages list the blocks included in the Target for TI C6000 DSP
block libraries, in alphabetical order by the block name.

tic6000.book Page 14 Monday, February 6, 2006 10:39 AM

Byte Pack

5-15

5Byte PackPurpose Convert input signals into uint8 vector

Library Host Communication Library in Embedded Target for TI C6000 DSP

Description Using the input port, the block converts data of one or more data types into
a single uint8 vector for output. With the options available, you specify the
input data types and the alignment of the data in the output vector. Since UDP
messages are in uint8 data format, use this block before a UDP Send block to
format the data for transmission using the UDP protocol.

Dialog Box

Input port data types (cell array)
Specify the data types for the different signals as part of the parameters.
The block supports all Simulink data types except characters. Enter the
data types as Simulink types in the cell array, such as 'double' or 'int32'.
The order of the data type entries in the cell array must match the order in
which the data arrives at the block input. Signal sizes are determined
automatically by the block. The block always has at least one input port
and only one output port.

Byte alignment
This option specifies how the data types are aligned to form the uint8
output vector. Select one of the values in bytes from the list.

tic6000.book Page 15 Monday, February 6, 2006 10:39 AM

Byte Pack

5-16

Alignment can occur on 1, 2, 4, or 8 byte boundaries depending on the value
you choose. The default is 1. Given the alignment value, each signal data
value begins on multiples of the alignment value. The alignment algorithm
ensures that each element in the output vector begins on a byte boundary
specified by the alignment value and relative to the starting point of the
vector.

Selecting 1 for Byte alignment provides the tightest packing, with no holes
between any data types for any combination of data types and signals.

In general, when you have multiple data types of varying lengths, specifying
2-byte alignment means there might be gaps of 1 byte between a uint8 or int8
value and another data type. In the pack implementation, the block copies
data to the output data buffer 1 byte at a time. You can specify any of the data
alignment options with any of the data types.

Example As you see in the following figure, enter input data types in a cell array in
Input port data types. The order of the data types you enter must match the
order of the data types at the block input.

In the cell array, you provide the order in which the block expects to receive
data—uint32, uint32, uint16, double, uint8, double, and single. With this
information, the block automatically provides the proper number of input
ports.

tic6000.book Page 16 Monday, February 6, 2006 10:39 AM

Byte Pack

5-17

Byte alignment equal to 2 specifies that each new value begins 2 bytes from the
previous data boundary.

In the example shown, the data types are

 {'uint32','uint32','uint16','double','uint8','double','single'}

Assuming that all of the signals are scalars (no matrices or vectors in this
example), the first signal value in the vector starts at 0 bytes, the second at 2
bytes, the third at 4 bytes, the fourth at 6 bytes, the fifth at 8 bytes, the sixth
at 10 bytes, and the seventh at 12 bytes. Notice that the packing algorithm
leaves a one byte gap between the uint8 data value and the double value.

See Also Byte Reversal, Byte Unpack

tic6000.book Page 17 Monday, February 6, 2006 10:39 AM

Byte Reversal

5-18

5Byte ReversalPurpose Reverse order of bytes in input word

Library Host Communication Library in Embedded Target for TI C6000 DSP

Description Byte reversal changes the order of the bytes in data you input to the block. Use
this when your process communicates between targets that use different
endianness, such as between Intel processors that are little-endian and others
that are big-endian. Texas Instruments processors are generally little-endian
by default.

When you transmit data to a processor with different endianness, place a byte
reversal block just before the send block in a model and immediately after the
receive block to ensure that transmitted data has the correct endianness.

Dialog Box

Number of inputs
 Specify the number of input ports for the block. The number of input ports
adjusts automatically to match value so the number of outputs is equal to
the number of inputs.

When you use more than one input port, each input port maps to the
matching output port. Data entering input port 1 leaves through output
port 1 and so on.

tic6000.book Page 18 Monday, February 6, 2006 10:39 AM

Byte Reversal

5-19

Reversing the bytes does not change the data type. Input and output retain
matching data type.

The following model shows byte reversal in use. Notice that the input and
output ports match for each path.

See Also Byte Pack, Byte Unpack

tic6000.book Page 19 Monday, February 6, 2006 10:39 AM

Byte Unpack

5-20

5Byte UnpackPurpose Unpack UDP uint8 input vector into Simulink data type values

Library Host Communication Library in Embedded Target for TI C6000 DSP

Description Byte Unpack is the inverse of the Byte Pack block. It pairs with the UDP
Receive block in models, receiving a vector of uint8 from a UDP message and
outputting Simulink data types in different sizes depending on the input
vector.

The block supports all Simulink data types.

Dialog Box

Output port dimensions (cell array)
Containing a cell array, each element in the array specifies the dimension
that the size function in MATLAB returns for the corresponding signal.
Usually you use the same dimensions as you set for the corresponding Byte
Pack block in the model. Entering one value means the block applies that
dimension to all data types.

Output port data types (cell array)
Specify the data types for the different input signals to the Pack block. The
block supports all Simulink data types—single, double, int8, uint8,

tic6000.book Page 20 Monday, February 6, 2006 10:39 AM

Byte Unpack

5-21

int16, uint16, int32, and uint32, and boolean. The entry here is the same
as the Input port data types parameter in the Byte Pack block in the model.
You can enter one data type and the block applies that type to all output
ports.

Byte Alignment
Specifies how the data types are aligned in the input uint8 vector. This
should match the corresponding Byte Pack block alignment value, and
supports the same settings of 1, 2, 4, and 8 bytes.

Example Here is an example of the Byte Unpack block that corresponds to the example
in the Byte Pack example. The Output port data types (cell array) entry here
is the same as the Input port data types (cell array) entry in the Byte Pack
block

{'uint32','uint32','uint16','double','uint8','double','single'}.

In addition, the Byte alignment setting matches as well. Output port
dimensions (cell array) now includes scalars and matrices to demonstrate
entering nonscalar values. The example for the Byte Pack block assumed only
scalar inputs.

tic6000.book Page 21 Monday, February 6, 2006 10:39 AM

Byte Unpack

5-22

See Also Byte Pack, Byte Reversal

tic6000.book Page 22 Monday, February 6, 2006 10:39 AM

C62x Autocorrelation

5-23

5C62x AutocorrelationPurpose Compute the autocorrelation of an input vector or frame-based matrix

Library C62x DSP Library—Math and Matrices

Description The Autocorrelation block computes the autocorrelation of an input vector or
frame-based matrix. For frame-based inputs, the autocorrelation is computed
along each of the input’s columns. The number of samples in the input channels
must be an integer multiple of eight. Input and output signals are real and
Q.15.

Autocorrelation blocks support discrete sample times and little-endian code
generation only.

Dialog Box

Compute all non-negative lags
When you select this parameter, the autocorrelation is performed using all
nonnegative lags, where the number of lags is one less than the length of
the input. The lags produced are therefore in the range
[0, length(input)-1]. When this parameter is not selected, you specify the
lags used in Maximum non-negative lag (less than input length).

Maximum non-negative lag (less than input length)
Specify the maximum lag (maxLag) the block should use in performing the
autocorrelation. The lags used are in the range [0, maxLag]. The maximum

tic6000.book Page 23 Monday, February 6, 2006 10:39 AM

C62x Autocorrelation

5-24

lag must be odd. Enable this parameter by clearing the Compute all
non-negative lags parameter.

Algorithm In simulation, the Autocorrelation block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_autocor. During code
generation, this block calls the DSP_autocor routine to produce optimized code.

tic6000.book Page 24 Monday, February 6, 2006 10:39 AM

C62x Bit Reverse

5-25

5C62x Bit ReversePurpose Bit-reverse the positions of the elements of each channel of a complex input
signal

Library C62x DSP Library—Transforms

Description The Bit Reverse block bit-reverses the elements of each channel of a complex
input signal, X. The Bit Reverse block is primarily used to provide
correctly-ordered inputs and outputs to or from blocks that perform FFTs.
Inputs to this block must be 16-bit fixed-point data types.

The Bit Reverse block supports discrete sample times and little-endian code
generation only.

Dialog Box

Algorithm In simulation, the Bit Reverse block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_bitrev_cplx. During
code generation, this block calls the DSP_bitrev_cplx routine to produce
optimized code.

Examples The Bit Reverse block reorders the output of the C62xRadix-2 FFT in the model
below to natural order.

The following code calculates the same FFT in the workspace. The output from
this calculation, y2, is displayed side-by-side with the output from the model, c.
The outputs match, showing that the Bit Reverse block reorders the Radix-2
FFT output to natural order:

tic6000.book Page 25 Monday, February 6, 2006 10:39 AM

C62x Bit Reverse

5-26

k = 4;
n = 2^k;
xr = zeros(n, 1);
xr(2) = 0.5;
xi = zeros(n, 1);
x2 = complex(xr, xi);
y2 = fft(x2);

[y2, c]
 0.5000 0.5000
 0.4619 - 0.1913i 0.4619 - 0.1913i
 0.3536 - 0.3536i 0.3535 - 0.3535i
 0.1913 - 0.4619i 0.1913 - 0.4619i
 0 - 0.5000i 0 - 0.5000i
 -0.1913 - 0.4619i -0.1913 - 0.4619i
 -0.3536 - 0.3536i -0.3535 - 0.3535i
 -0.4619 - 0.1913i -0.4619 - 0.1913i
 -0.5000 -0.5000
 -0.4619 + 0.1913i -0.4619 + 0.1913i
 -0.3536 + 0.3536i -0.3535 + 0.3535i
 -0.1913 + 0.4619i -0.1913 + 0.4619i
 0 + 0.5000i 0 + 0.5000i
 0.1913 + 0.4619i 0.1913 + 0.4619i
 0.3536 + 0.3536i 0.3535 + 0.3535i
 0.4619 + 0.1913i 0.4619 + 0.1913i

See Also C62xRadix-2 FFT, C62xRadix-2 IFFT

tic6000.book Page 26 Monday, February 6, 2006 10:39 AM

C62x Block Exponent

5-27

5C62x Block ExponentPurpose Return the minimum exponent (number of extra sign bits) found in each
channel of an input

Library C62x DSP Library—Math and Matrices

Description The Block Exponent block first computes the number of extra sign bits of all
values in each channel of an input signal, and then returns the minimum
number of sign bits found in each channel. The number of elements in each
input channel must be even and at least six. All input elements must be 32-bit
signed fixed-point data types. The output is a vector of 16-bit integers—one
integer for each channel of the input signal.

This block is useful for determining whether every sample in a channel is using
extra sign bits. If so, you can scale your signal by the minimum number of extra
sign bits to eliminate the common extra bits. This increases the representable
precision and decreases the representable range of the signal.

The Block Exponent block supports both continuous and discrete sample times.
This block also supports both little-endian and big-endian code generation.

Dialog Box

Algorithm In simulation, the Block Exponent block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_bexp. During code
generation, this block calls the DSP_bexp routine given to produce optimized
code.

tic6000.book Page 27 Monday, February 6, 2006 10:39 AM

C62x Complex FIR

5-28

5C62x Complex FIRPurpose Filter a complex input signal using a complex FIR filter

Library C62x DSP Library—Filtering

Description The Complex FIR block filters a complex input signal X using a complex FIR
filter. This filter is implemented using a direct form structure.

The number of FIR filter coefficients, which are given as elements of the input
vector H, must be even. The product of the number of elements of X and the
number of elements of H must be at least four. Inputs, coefficients, and outputs
are all Q.15 data types.

The Complex FIR block supports discrete sample times and little-endian code
generation only.

Dialog Box

Coefficient source
Specify the source of the filter coefficients:

•Specify via dialog—Enter the coefficients in the Coefficients (H)
parameter in the dialog

•Input port—Accept the coefficients from port H. This port must have the
same rate as the input data port X.

Coefficients (H)

tic6000.book Page 28 Monday, February 6, 2006 10:39 AM

C62x Complex FIR

5-29

Designate the filter coefficients in vector format. There must be an even
number of coefficients. This parameter is only visible when Specify via
dialog is selected for the Coefficient source parameter. This parameter
is tunable in simulation.

Initial conditions
If the initial conditions are

•All the same, you need only enter a scalar.

•Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. The length of this vector
must be one less than the number of coefficients.

•Different across channels, enter a matrix containing all initial conditions.
The number of rows of this matrix must be one less than the number of
coefficients, and the number of columns of this matrix must be equal to
the number of channels.

You may enter real-valued initial conditions. Zero-valued imaginary parts
will be assumed.

Algorithm In simulation, the Complex FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fir_cplx. During code
generation, this block calls the DSP_fir_cplx routine to produce optimized
code.

See Also C62xGeneral Real FIR, C62xRadix-4 Real FIR, C62xRadix-8 Real FIR,
C62xSymmetric Real FIR

tic6000.book Page 29 Monday, February 6, 2006 10:39 AM

C62x Convert Floating-Point to Q.15

5-30

5C62x Convert Floating-Point to Q.15Purpose Convert a single-precision floating-point input signal to a Q.15 fixed-point
signal

Library C62x DSP Library—Conversions

Description The Convert Floating-Point to Q.15 block converts a single-precision
floating-point input signal to a Q.15 output signal. Input can be real or
complex. For real inputs, the number of input samples must be even.

The Convert Floating-Point to Q.15 block supports both continuous and
discrete sample times. This block also supports both little-endian and
big-endian code generation.

Dialog Box

Algorithm In simulation, the Convert Floating-Point to Q.15 block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fltoq15. During code
generation, this block calls the DSP_fltoq15 routine to produce optimized code.

See Also C62xConvert Q.15 to Floating Point

tic6000.book Page 30 Monday, February 6, 2006 10:39 AM

C62x Convert Q.15 to Floating-Point

5-31

5C62x Convert Q.15 to Floating-PointPurpose Convert a Q.15 fixed-point signal to a single-precision floating-point signal

Library C62x DSP Library—Conversions

Description The Convert Q.15 to Floating-Point block converts a Q.15 input signal to a
single-precision floating-point output signal. Input can be real or complex. For
real inputs, the number of input samples must be even.

The Convert Q.15 to Floating-Point block supports both continuous and
discrete sample times. This block also supports both little-endian and
big-endian code generation.

Dialog Box

Algorithm In simulation, the Convert Q.15 to Floating-Point block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_q15tofl. During code
generation, this block calls the DSP_q15tofl routine to produce optimized code.

See Also C62xConvert Floating-Point to Q.15

tic6000.book Page 31 Monday, February 6, 2006 10:39 AM

C62x FFT

5-32

5C62x FFTPurpose Compute the decimation-in-frequency forward FFT of a complex input vector

Library C62x DSP Library—Transforms

Description The FFT block computes the decimation-in-frequency forward FFT, with
interstage scaling, of each channel of a complex input signal. The input length
of each channel must be both a power of two and in the range 8 to 16,384,
inclusive. The input must also be in natural (linear) order. The output of this
block is a complex signal in natural order. Inputs and outputs are all signed
16-bit fixed-point data types.

The fft16x16r routine used by this block employs butterfly stages to perform
the FFT. The number of butterfly stages used, S, depends on the input length
L = 2^k. If k is even, then S = k/2. If k is odd, then S = (k+1)/2.

If k is even, then L is a power of two as well as a power of four, and this block
performs all S stages with radix-4 butterflies to compute the output. If k is odd,
then L is a power of two but not a power of four. In that case this block performs
the first (S-1) stages with radix-4 butterflies, followed by a final stage using
radix-2 butterflies.

To minimize noise, the FFT block also implements a divide-by-two scaling on
the output of each stage except for the last. Therefore, in order to ensure that
the gain of the block matches that of the theoretical FFT, the FFT block offsets
the location of the binary point of the output data type by (S-1) bits to the right
relative to the location of the binary point of the input data type. That is, the
number of fractional bits of the output data type equals the number of
fractional bits of the input data type minus (S-1).

The FFT block supports both continuous and discrete sample times. This block
supports little-endian code generation.

OutputFractionalBits InputFractionalBits S 1–()–=

tic6000.book Page 32 Monday, February 6, 2006 10:39 AM

C62x FFT

5-33

Dialog Box

Algorithm In simulation, the FFT block is equivalent to the TMS320C62x DSP Library
assembly code function DSP_fft16x16r. During code generation, this block
calls the DSP_fft16x16r routine to produce optimized code.

See Also C62xRadix-2 FFT, C62xRadix-2 IFFT

tic6000.book Page 33 Monday, February 6, 2006 10:39 AM

C62x General Real FIR

5-34

5C62x General Real FIRPurpose Filter a real input signal using a real FIR filter

Library C62x DSP Library—Filtering

Description The General Real FIR block filters a real input signal X using a real FIR filter.
This filter is implemented using a direct form structure.

The filter coefficients are specified by a real vector H, which must contain at
least five elements. The coefficients must be in reversed order. All inputs,
coefficients, and outputs are Q.15 signals.

The General Real FIR block supports discrete sample times and both
little-endian and big-endian code generation.

Dialog Box

Coefficient source
Specify the source of the filter coefficients:

•Specify via dialog—Enter the coefficients in the Coefficients (H)
parameter in the dialog

•Input port—Accept the coefficients from port H. This port must have the
same rate as the input data port X

Coefficients (H)

tic6000.book Page 34 Monday, February 6, 2006 10:39 AM

C62x General Real FIR

5-35

Designate the filter coefficients in vector format. This parameter is only
visible when Specify via dialog is selected for the Coefficient source
parameter. This parameter is tunable in simulation.

Initial conditions
If the initial conditions are

•All the same, you need only enter a scalar.

•Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. The length of this vector
must be one less than the number of coefficients.

•Different across channels, enter a matrix containing all initial conditions.
The number of rows of this matrix must be one less than the number of
coefficients, and the number of columns of this matrix must be equal to
the number of channels.

The initial conditions must be real.

Algorithm In simulation, the General Real FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fir_gen. During code
generation, this block calls the DSP_fir_gen routine to produce optimized code.

See Also C62xComplex FIR, C62xRadix-4 Real FIR, C62xRadix-8 Real FIR,
C62xSymmetric Real FIR

tic6000.book Page 35 Monday, February 6, 2006 10:39 AM

C62x LMS Adaptive FIR

5-36

5C62x LMS Adaptive FIRPurpose Filter a scalar input using least-mean-square adaptive filtering

Library C62x DSP Library—Filtering

Description The LMS Adaptive FIR block performs least-mean-square (LMS) adaptive
filtering. This filter is implemented using a direct form structure.

The following constraints apply to the inputs and outputs of this block:

• The scalar input must be a Q.15 data type.

• The scalar input must be a Q.15 data type.

• The scalar output is a Q1.30 data type.

• The output has length equal to the number of filter taps and is a Q.15 data
type. The number of filter taps must be a positive, even integer.

This block performs LMS adaptive filtering according to the equations

and

where

• designates the time step.

• is a vector composed of the current and last scalar inputs.

• is the desired signal. The output converges to as the filter converges.

• is a vector composed of the current set of filter taps.

• is the error, or .

• is the step size.

For this block, the input and the output are defined by

which combined with the first two equations, result in the following equations
that this block follows:

X

B

R

H

e n 1+() d n 1+() H n() X n 1+()⋅[]–=

H n 1+() H n() μe n 1+() X n 1+()⋅[]+=

n

X nH 1–

d R d

H

e d H n() X n 1+()⋅[]–

μ

B R

B μe n 1+()=

R H n() X n 1+()⋅=

tic6000.book Page 36 Monday, February 6, 2006 10:39 AM

C62x LMS Adaptive FIR

5-37

 and must be produced externally to the LMS Adaptive FIR block. Refer to
Examples below for a sample model that does this.

The LMS Adaptive FIR block supports discrete sample times and both
little-endian and big-endian code generation.

Dialog Box

Number of FIR filter taps
Designate the number of filter taps. The number of taps must be a positive,
even integer.

Initial value of filter taps
Enter the initial value of the filter taps.

Output filter coefficients H?
If selected, the filter taps are produced as output H. If not selected, H is
suppressed.

Algorithm In simulation, the LMS Adaptive FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_firlms2. During code
generation, this block calls the DSP_firlms2 routine to produce optimized code.

e n 1+() d n 1+() R–=

H n 1+() H n() B X n 1+()⋅[]+=

d B

tic6000.book Page 37 Monday, February 6, 2006 10:39 AM

C62x LMS Adaptive FIR

5-38

Examples The following model uses the LMS Adaptive FIR block.

The portion of the model enclosed by the dashed line produces the signal and
feeds it back into the LMS Adaptive FIR block. The inputs to this region are
and the desired signal , and the output of this region is the vector of filter taps

. Thus this region of the model acts as a canonical LMS adaptive filter. For
example, compare this region to the adaptfilt.lms function in the Filter
Design Toolbox. adaptfilt.lms performs canonical LMS adaptive filtering and
has the same inputs and output as the outlined section of this model.

To use the LMS Adaptive FIR block you must create the input in some way
similar to the one shown here. You must also provide the signals and . This
model simulates the desired signal by feeding into a digital filter block.
You can simulate your desired signal in a similar way, or you may bring in
from the workspace with a From Workspace or codec block.

X d

e B

B
X

d
H

B
X d

d X
d

tic6000.book Page 38 Monday, February 6, 2006 10:39 AM

C62x Matrix Multiply

5-39

5C62x Matrix MultiplyPurpose Perform matrix multiplication on two input signals

Library C62x DSP Library—Math and Matrices

Description The Matrix Multiply block multiplies two input matrices A and B. Inputs and
outputs are real, 16-bit, signed fixed-point data types. This block wraps
overflows when they occur.

The product of the two 16-bit inputs results in a 32-bit accumulator value. The
Matrix Multiply block, however, only outputs 16 bits. You can choose to output
the highest or second-highest 16 bits of the accumulator value.

Alternatively, you can choose to output 16 bits according to how many
fractional bits you want in the output. The number of fractional bits in the
accumulator value is the sum of the fractional bits of the two inputs.

Therefore R+S is the location of the binary point in the accumulator value. You
can select 16 bits in relation to this fixed position of the accumulator binary
point to give the desired number of fractional bits in the output (see Examples
below). You can either require the output to have the same number of fractional
bits as one of the two inputs, or you can specify the number of output fractional
bits in the Number of fractional bits in output parameter.

The Matrix Multiply block supports both continuous and discrete sample
times. This block also supports both little-endian and big-endian code
generation.

Input A Input B Accumulator
Value

Total Bits 16 16 32

Fractional Bits R S R + S

tic6000.book Page 39 Monday, February 6, 2006 10:39 AM

C62x Matrix Multiply

5-40

Dialog Box

Set fractional bits in output to
Only 16 bits of the 32 accumulator bits are output from the block. Choose
which 16 bits to output from the list:

•Match input A—Output the 16 bits of the accumulator value that cause
the number of fractional bits in the output to match the number of
fractional bits in input A (or R in the discussion above).

•Match input B—Output the 16 bits of the accumulator value that cause
the number of fractional bits in the output to match the number of
fractional bits in input B (or S in the discussion above).

•Match high bits of acc. (b31:b16)—Output the highest 16 bits of the
accumulator value.

•Match high bits of prod. (b30:b15)—Output the second-highest 16
bits of the accumulator value.

•User-defined—Output the 16 bits of the accumulator value that cause
the number of fractional bits of the output to match the value specified in
the Number of fractional bits in output parameter.

Number of fractional bits in output
Specify the number of bits to the right of the binary point in the output.
This parameter is enabled only when you select User-defined for Set
fractional bits in output to.

tic6000.book Page 40 Monday, February 6, 2006 10:39 AM

C62x Matrix Multiply

5-41

Algorithm In simulation, the Matrix Multiply block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_mat_mul. During code
generation, this block calls the DSP_mat_mul routine to produce optimized code.

Examples Example 1 Suppose A and B are both Q.15. The data type of the resulting
accumulator value is therefore the 32-bit data type Q1.30 (R + S = 30). In the
accumulator, bits 31:30 are the sign and integer bits, and bits 29:0 are the
fractional bits. The following table shows the resulting data type and
accumulator bits used for the output signal for different settings of the Set
fractional bits in output to parameter.

Example 2 Suppose A is Q12.3 and B is Q10.5. The data type of the resulting
accumulator value is therefore Q23.8 (R + S = 8). In the accumulator, bits 31:8
are the sign and integer bits, and bits 7:0 are the fractional bits. The following
table shows the resulting data type and accumulator bits used for the output
signal for different settings of the Set fractional bits in output to
parameter.

See Also C62xVector Multiply

Set fractional bits in output to Data Type Accumulator Bits

Match input A Q.15 b30:b15

Match input B Q.15 b30:b15

Match high bits of acc. Q1.14 b31:b16

Match high bits of prod. Q.15 b30:b15

Set fractional bits in output to Data Type Accumulator Bits

Match input A Q12.3 b20:b5

Match input B Q10.5 b18:b3

Match high bits of acc. Q23.-8 b31:b16

Match high bits of prod. Q22.-7 b30:b15

tic6000.book Page 41 Monday, February 6, 2006 10:39 AM

C62x Matrix Transpose

5-42

5C62x Matrix TransposePurpose Compute the matrix transpose of an input signal

Library C62x DSP Library—Math and Matrices

Description The Matrix Transpose block transposes an input matrix or vector. A 1-D input
is treated as a column vector and is transposed to a row vector. Input and
output signals are any real, 16-bit, signed fixed-point data type.

The Matrix Transpose block supports both continuous and discrete sample
times. This block also supports both little-endian and big-endian code
generation.

Dialog Box

Algorithm In simulation, the Matrix Transpose block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_mat_trans. During
code generation, this block calls the DSP_mat_trans routine to produce
optimized code.

tic6000.book Page 42 Monday, February 6, 2006 10:39 AM

C62x Radix-2 FFT

5-43

5C62x Radix-2 FFTPurpose Compute the radix-2 decimation-in-frequency forward FFT of a complex input
vector

Library C62x DSP Library—Transforms

Description The Radix-2 FFT block computes the radix-2 decimation-in-frequency forward
FFT of each channel of a complex input signal. The input length of each
channel must be both a power of two and in the range 16 to 32,768, inclusive.
The input must also be in natural (linear) order. The output of this block is
a complex signal in bit-reversed order. Inputs and outputs are signed 16-bit
fixed-point data types, and the output data type matches the input data type.

You can use the C62x Bit Reverse block to reorder the output of the Radix-2
FFT block to natural order.

The Radix-2 FFT block supports both continuous and discrete sample times.
This block supports little-endian code generation.

Dialog Box

Algorithm In simulation, the Radix-2 FFT block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_radix2. During code
generation, this block calls the DSP_radix2 routine to produce optimized code.

Examples The output of the Radix-2 FFT block is bit-reversed. This example shows you
how to use the C62x Bit Reverse block to reorder the output of the Radix-2 FFT
block to natural order.

tic6000.book Page 43 Monday, February 6, 2006 10:39 AM

C62x Radix-2 FFT

5-44

The following code calculates the same FFT as the above model in the
workspace. The output from this calculation, y2, is then displayed side-by-side
with the output from the model, c. The outputs match, showing that the Bit
Reverse block does reorder the Radix-2 FFT block output to natural order:

k = 4;
n = 2^k;
xr = zeros(n, 1);
xr(2) = 0.5;
xi = zeros(n, 1);
x2 = complex(xr, xi);
y2 = fft(x2);

[y2, c]
 0.5000 0.5000
 0.4619 - 0.1913i 0.4619 - 0.1913i
 0.3536 - 0.3536i 0.3535 - 0.3535i
 0.1913 - 0.4619i 0.1913 - 0.4619i
 0 - 0.5000i 0 - 0.5000i
 -0.1913 - 0.4619i -0.1913 - 0.4619i
 -0.3536 - 0.3536i -0.3535 - 0.3535i
 -0.4619 - 0.1913i -0.4619 - 0.1913i
 -0.5000 -0.5000
 -0.4619 + 0.1913i -0.4619 + 0.1913i
 -0.3536 + 0.3536i -0.3535 + 0.3535i
 -0.1913 + 0.4619i -0.1913 + 0.4619i
 0 + 0.5000i 0 + 0.5000i
 0.1913 + 0.4619i 0.1913 + 0.4619i
 0.3536 + 0.3536i 0.3535 + 0.3535i

 0.4619 + 0.1913i 0.4619 + 0.1913i

See Also C62x Bit Reverse, C62x FFT, C62x Radix-2 IFFT

tic6000.book Page 44 Monday, February 6, 2006 10:39 AM

C62x Radix-2 IFFT

5-45

5C62x Radix-2 IFFTPurpose Compute the radix-2 inverse FFT of a complex input vector

Library C62x DSP Library—Transforms

Description The Radix-2 IFFT block computes the radix-2 inverse FFT of each channel of a
complex input signal. This block uses a decimation-in-frequency forward FFT
algorithm with butterfly weights modified to compute an inverse FFT. The
input length of each channel must be both a power of two and in the range 16
to 32,768, inclusive. The input must also be in natural (linear) order. The
output of this block is a complex signal in bit-reversed order. Inputs and
outputs are signed 16-bit fixed-point data types.

The radix2 routine used by this block employs a radix-2 FFT of length L=2^k.
In order to ensure that the gain of the block matches that of the theoretical
IFFT, the Radix-2 IFFT block offsets the location of the binary point of the
output data type by k bits to the left relative to the location of the binary point
of the input data type. That is, the number of fractional bits of the output data
type equals the number of fractional bits of the input data type plus k.

You can use the C62x Bit Reverse block to reorder the output of the Radix-2
IFFT block to natural order.

The Radix-2 IFFT block supports both continuous and discrete sample times.
This block supports little-endian code generation.

Dialog Box

OutputFractionalBits InputFractionalBits k()+=

tic6000.book Page 45 Monday, February 6, 2006 10:39 AM

C62x Radix-2 IFFT

5-46

Algorithm In simulation, the Radix-2 IFFT block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_radix2. During code
generation, this block calls the DSP_radix2 routine to produce optimized code.

See Also C62x Bit Reverse, C62x FFT, C62x Radix-2 FFT

tic6000.book Page 46 Monday, February 6, 2006 10:39 AM

C62x Radix-4 Real FIR

5-47

5C62x Radix-4 Real FIRPurpose Filter a real input signal using a real FIR filter

Library C62x DSP Library—Filtering

Description The Radix-4 Real FIR block filters a real input signal X using a real FIR filter.
This filter is implemented using a direct form structure.

The number of input samples per channel must be even. The filter coefficients
are specified by a real vector, H. The number of filter coefficients must be
a multiple of four and must be at least eight. The coefficients must also be in
reversed order. All inputs, coefficients, and outputs are Q.15 signals.

The Radix-4 Real FIR block supports discrete sample times and both
little-endian and big-endian code generation.

Dialog Box

Coefficient source
Specify the source of the filter coefficients:

•Specify via dialog—Enter the coefficients in the Coefficients
parameter in the dialog

•Input port—Accept the coefficients from port H. This port must have the
same rate as the input data port X

tic6000.book Page 47 Monday, February 6, 2006 10:39 AM

C62x Radix-4 Real FIR

5-48

Coefficients (H)
Designate the filter coefficients in vector format. This parameter is only
visible when Specify via dialog is selected for the Coefficient source
parameter. This parameter is tunable in simulation.

Initial conditions
If the initial conditions are

•All the same, enter a scalar.

•Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. The length of this vector
must be one less than the number of coefficients.

•Different across channels, enter a matrix containing all initial conditions.
The number of rows of this matrix must be one less than the number of
coefficients, and the number of columns of this matrix must be equal to
the number of channels.

Initial conditions must be real.

Algorithm In simulation, the Radix-4 Real FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fir_r4. During code
generation, this block calls the DSP_fir_r4 routine to produce optimized code.

See Also C62xComplex FIR, C62xGeneral Real FIR, C62xRadix-8 Real FIR,
C62xSymmetric Real FIR

tic6000.book Page 48 Monday, February 6, 2006 10:39 AM

C62x Radix-8 Real FIR

5-49

5C62x Radix-8 Real FIRPurpose Filter a real input signal using a real FIR filter

Library C62x DSP Library—Filtering

Description The Radix-8 Real FIR block filters a real input signal X using a real FIR filter.
This filter is implemented using a direct form structure.

The number of input samples per channel must be even. The filter coefficients
are specified by a real vector, H. The number of coefficients must be an integer
multiple of eight. The coefficients must be in reversed order. All inputs,
coefficients, and outputs are Q.15 signals.

The Radix-8 Real FIR block supports discrete sample times and little-endian
code generation only.

Dialog Box

Coefficient source
Specify the source of the filter coefficients:

•Specify via dialog—Enter the coefficients in the Coefficients
parameter in the dialog

•Input port—Accept the coefficients from port H. This port must have the
same rate as the input data port X

tic6000.book Page 49 Monday, February 6, 2006 10:39 AM

C62x Radix-8 Real FIR

5-50

Coefficients (H)
Designate the filter coefficients in vector format. This parameter is only
visible when Specify via dialog is selected for the Coefficient source
parameter. This parameter is tunable in simulation.

Initial conditions
If the initial conditions are

•All the same, you need only enter a scalar.

•Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. The length of this vector
must be one less than the number of coefficients.

•Different across channels, enter a matrix containing all initial conditions.
The number of rows of this matrix must be one less than the number of
coefficients, and the number of columns of this matrix must be equal to
the number of channels.

Initial conditions must be real.

Algorithm In simulation, the Radix-8 Real FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fir_r8. During code
generation, this block calls the DSP_fir_r8 routine to produce optimized code.

See Also C62xComplex FIR, C62xGeneral Real FIR, C62xRadix-4 Real FIR,
C62xSymmetric Real FIR

tic6000.book Page 50 Monday, February 6, 2006 10:39 AM

C62x Real Forward Lattice All-Pole IIR

5-51

5C62x Real Forward Lattice All-Pole IIRPurpose Filter a real input signal using an autoregressive forward lattice filter

Library C62x DSP Library—Filtering

Description The Real Forward Lattice All-Pole IIR block filters a real input signal using an
autoregressive forward lattice filter. The input and output signals must be the
same 16-bit signed fixed-point data type. The reflection coefficients must be
real and Q.15. The number of reflection coefficients must be greater than or
equal to four, and they must be in reversed order. Use an even number of
reflection coefficients to maximize the speed of your generated code.

The Real Forward Lattice All-Pole IIR block supports discrete sample times
and both little-endian and big-endian code generation.

Dialog Box

Coefficient source
Specify the source of the filter coefficients:

•Specify via dialog—Enter the coefficients in the Reflection
coefficients parameter in the dialog

•Input port—Accept the coefficients from port K

Reflection coefficients

tic6000.book Page 51 Monday, February 6, 2006 10:39 AM

C62x Real Forward Lattice All-Pole IIR

5-52

Designate the reflection coefficients of the filter in vector format. The
number of coefficients must be greater than or equal to four, and they must
be in reverse order. Using an even number of reflection coefficients
maximizes the speed of your generated code. This parameter is visible
when you select Specify via dialog for the Coefficient source
parameter. This parameter is tunable in simulation.

Initial conditions
If your block initial conditions are

•All the same, you need only enter a scalar.

•Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. The length (number of
elements) of this vector must be the same as the number of reflection
coefficients in your filter.

•Different across channels, enter a matrix containing all initial conditions.
The number of rows (initial conditions for one channel) of this matrix
must be the same as the number of reflection coefficients, and the number
of columns of this matrix must be equal to the number of channels.

Algorithm In simulation, the Real Forward Lattice All-Pole IIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_iirlat. During code
generation, this block calls the DSP_iirlat routine to produce optimized code.

See Also C62xReal IIR

tic6000.book Page 52 Monday, February 6, 2006 10:39 AM

C62x Real IIR

5-53

5C62x Real IIRPurpose Filter a real input signal using a real autoregressive moving-average IIR filter

Library C62x DSP Library—Filtering

Description The Real IIR block filters a real input signal X using a real autoregressive
moving-average (ARMA) IIR Filter. This filter is implemented using a direct
form I structure.

There must be five AR coefficients and five MA coefficients. The first AR
coefficient is always assumed to be one. Inputs, coefficients, and output are
Q.15 data types.

The Real IIR block supports discrete sample times and both little-endian and
big-endian code generation.

Dialog Box

tic6000.book Page 53 Monday, February 6, 2006 10:39 AM

C62x Real IIR

5-54

Coefficient sources
Specify the source of the filter coefficients:

•Specify via dialog—Enter the coefficients in the MA (numerator)
coefficients and AR (denominator) coefficients parameters in the
dialog

•Input ports—Accept the coefficients from ports MA and AR

MA (numerator) coefficients
Designate the moving-average coefficients of the filter in vector format.
There must be five MA coefficients. This parameter is only visible when
Specify via dialog is selected for the Coefficient sources parameter.
This parameter is tunable in simulation.

AR (denominator) coefficients
Designate the autoregressive coefficients of the filter in vector format.
There must be five AR coefficients, however the first AR coefficient is
assumed to be equal to one. This parameter is only visible when Specify
via dialog is selected for the Coefficient sources parameter. This
parameter is tunable in simulation.

Input state initial conditions
If the input state initial conditions are

•All the same, you need only enter a scalar.

•Different within channels but the same across channels, enter a vector
containing the input state initial conditions for one channel. The length
of this vector must be four.

•Different across channels, enter a matrix containing all input state initial
conditions. This matrix must have four rows.

Output state initial conditions
If the output state initial conditions are

•All the same, you need only enter a scalar.

•Different within channels but the same across channels, enter a vector
containing the output state initial conditions for one channel. The length
of this vector must be four.

tic6000.book Page 54 Monday, February 6, 2006 10:39 AM

C62x Real IIR

5-55

•Different across channels, enter a matrix containing all output state
initial conditions. This matrix must have four rows.

Algorithm In simulation, the Real IIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_iir. During code
generation, this block calls the DSP_iir routine to produce optimized code.

See Also C62xReal Forward Lattice All-Pole IIR

tic6000.book Page 55 Monday, February 6, 2006 10:39 AM

C62x Reciprocal

5-56

5C62x ReciprocalPurpose Compute the fractional and exponential portions of the reciprocal of a real
input signal

Library C62x DSP Library—Math and Matrices

Description The Reciprocal block computes the fractional (F) and exponential (E) portions
of the reciprocal of a real Q.15 input, such that the reciprocal of the input is
F*(2E). The fraction is Q.15 and the exponent is a 16-bit signed integer.

The Reciprocal block supports both continuous and discrete sample times. This
block also supports both little-endian and big-endian code generation.

Dialog Box

Algorithm In simulation, the Reciprocal block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_recip16. During code
generation, this block calls the DSP_recip16 routine to produce optimized code.

tic6000.book Page 56 Monday, February 6, 2006 10:39 AM

C62x Symmetric Real FIR

5-57

5C62x Symmetric Real FIRPurpose Filter a real input signal using a symmetric real FIR filter

Library C62x DSP Library—Filtering

Description The Symmetric Real FIR block filters a real input signal using a symmetric
real FIR filter. This filter is implemented using a direct form structure.

The number of input samples per channel must be even. The filter coefficients
are specified by a real vector H, which must be symmetric about its middle
element. The number of coefficients must be of the form 16k + 1, where k is a
positive integer. This block wraps overflows that occur. The input, coefficients,
and output are 16-bit signed fixed-point data types.

Intermediate multiplys and accumulates performed by this filter result in a
32-bit accumulator value. However, the Symmetric Real FIR block only
outputs 16 bits. You can choose to output 16 bits of the accumulator value in
one of the following ways.

The Symmetric Real FIR block supports discrete sample times and only
little-endian code generation.

Match input x Output 16 bits of the accumulator value such that the output
has the same number of fractional bits as the input

Match coefficients h Output 16 bits of the accumulator value such that the output
has the same number of fractional bits as the coefficients

Match high 16 bits of acc. Output bits 31 - 16 of the accumulator value

Match high 16 bits of prod. Output bits 30 - 15 of the accumulator value

User-defined Output 16 bits of the accumulator value such that the output
has the number of fractional bits specified in the Number of
fractional bits in output parameter

tic6000.book Page 57 Monday, February 6, 2006 10:39 AM

C62x Symmetric Real FIR

5-58

Dialog Box

Coefficient source
Specify the source of the filter coefficients:

•Specify via dialog—Enter the coefficients in the Coefficients
parameter in the dialog

•Input port—Accept the coefficients from port H

tic6000.book Page 58 Monday, February 6, 2006 10:39 AM

C62x Symmetric Real FIR

5-59

Coefficients
Enter the coefficients in vector format. This parameter is visible only when
Specify via dialog is specified for the Coefficient source parameter.
This parameter is tunable in simulation.

Set fractional bits in coefficients to
Specify the number of fractional bits in the filter coefficients:

•Match input X—Sets the coefficients to have the same number of
fractional bits as the input

•Best precision—Sets the number of fractional bits of the coefficients
such that the coefficients are represented to the best precision possible

•User-defined—Sets the number of fractional bits in the coefficients with
the Number of fractional bits in coefficients parameter

 This parameter is visible only when Specify via dialog is specified for
the Coefficient source parameter.

Number of fractional bits in coefficients
Specify the number of bits to the right of the binary point in the filter
coefficients. This parameter is visible only when Specify via dialog is
specified for the Coefficient source parameter, and is only enabled if
User-defined is specified for the Set fractional bits in coefficients to
parameter.

Set fractional bits in output to
Only 16 bits of the 32 accumulator bits are output from the block. Select
which 16 bits to output:

•Match input X—Output the 16 bits of the accumulator value that cause
the number of fractional bits in the output to match the number of
fractional bits in input X

•Match coefficients H—Output the 16 bits of the accumulator value
that cause the number of fractional bits in the output to match the
number of fractional bits in coefficients H

•Match high bits of acc. (b31:b16)—Output the highest 16 bits of the
accumulator value

•Match high bits of prod. (b30:b15)—Output the second-highest 16
bits of the accumulator value

tic6000.book Page 59 Monday, February 6, 2006 10:39 AM

C62x Symmetric Real FIR

5-60

•User-defined—Output the 16 bits of the accumulator value that cause
the number of fractional bits of the output to match the value specified in
the Number of fractional bits in output parameter

See Matrix Multiply “Examples” on page 5-41 for demonstrations of these
selections.

Number of fractional bits in output
Specify the number of bits to the right of the binary point in the output.
This parameter is only enabled if User-defined is selected for the Set
fractional bits in output to parameter.

Initial conditions
If the initial conditions are

•All the same, you need only enter a scalar.

•Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. The length of this vector
must be one less than the number of coefficients.

•Different across channels, enter a matrix containing all initial conditions.
The number of rows of this matrix must be one less than the number of
coefficients, and the number of columns of this matrix must be equal to
the number of channels.

Algorithm In simulation, the Symmetric Real FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fir_sym. During code
generation, this block calls the DSP_fir_sym routine to produce optimized code.

See Also C62xComplex FIR, C62xGeneral Real FIR, C62xRadix-4 Real FIR,
C62xRadix-8 Real FIR

tic6000.book Page 60 Monday, February 6, 2006 10:39 AM

C62x Vector Dot Product

5-61

5C62x Vector Dot ProductPurpose Compute the vector dot product of two real input signals

Library C62x DSP Library—Math and Matrices

Description The Vector Dot Product block computes the vector dot product of two real input
vectors, X and Y. The input vectors must have the same dimensions and must
be signed 16-bit fixed-point data types. The number of samples per channel of
the inputs must be even and greater than or equal to four. The output is a
signed 32-bit fixed-point scalar on each channel, and the number of fractional
bits of the output is equal to the sum of the number of fractional bits of the
inputs.

The Vector Dot Product block supports both continuous and discrete sample
times. This block also supports both little-endian and big-endian code
generation.

Dialog Box

Algorithm In simulation, the Vector Dot Product block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_dotprod. During code
generation, this block calls the DSP_dotprod routine to produce optimized code.

tic6000.book Page 61 Monday, February 6, 2006 10:39 AM

C62x Vector Maximum Index

5-62

5C62x Vector Maximum IndexPurpose Compute the index of the maximum value element in each channel of an input
signal

Library C62x DSP Library—Math and Matrices

Description The Vector Maximum Index block computes the zero-based index of the
maximum value element in each channel (vector) of the input signal. The input
may be any real, 16-bit, signed fixed-point data type, and the number of
samples per input channel must be an integer multiple of three. The output
data type is a 32-bit signed integer.

The Vector Maximum Index block supports both continuous and discrete
sample times. This block also supports both little-endian and big-endian code
generation.

Dialog Box

Algorithm In simulation, the Vector Maximum Index block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_maxidx. During code
generation, this block calls the DSP_maxidx routine to produce optimized code.

tic6000.book Page 62 Monday, February 6, 2006 10:39 AM

C62x Vector Maximum Value

5-63

5C62x Vector Maximum ValuePurpose Compute the maximum value for each channel of an input signal

Library C62x DSP Library—Math and Matrices

Description The Vector Maximum Value block returns the maximum value in each channel
(vector) of the input signal. The input can be any real, 16-bit, signed fixed-point
data type. The number of samples on each input channel must be an integer
multiple of four and must be at least 16. The output data type matches the
input data type.

The Vector Maximum Value block supports both continuous and discrete
sample times. This block also supports both little-endian and big-endian code
generation.

Dialog Box

Algorithm In simulation, the Vector Maximum Value block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_maxval. During code
generation, this block calls the DSP_maxval routine to produce optimized code.

See Also C62xVector Minimum Value

tic6000.book Page 63 Monday, February 6, 2006 10:39 AM

C62x Vector Minimum Value

5-64

5C62x Vector Minimum ValuePurpose Compute the minimum value for each channel of an input signal

Library C62x DSP Library—Math and Matrices

Description The Vector Minimum Value block returns the minimum value in each channel
of the input signal. The input may be any real, 16-bit, signed fixed-point data
type. The number of samples on each input channel must be an integer
multiple of four and must be at least 16. The output data type matches the
input data type.

The Vector Minimum Value block supports both continuous and discrete
sample times. This block also supports both little-endian and big-endian code
generation.

Dialog Box

Algorithm In simulation, the Vector Minimum Value block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_minval. During code
generation, this block calls the DSP_minval routine to produce optimized code.

See Also C62xVector Maximum Value

tic6000.book Page 64 Monday, February 6, 2006 10:39 AM

C62x Vector Multiply

5-65

5C62x Vector MultiplyPurpose Perform element-wise multiplication on two inputs

Library C62x DSP Library—Math and Matrices

Description The Vector Multiply block performs element-wise 32-bit multiplication of two
inputs X and Y. The total number of elements in each input must be even and
at least eight, and the inputs must have matching dimensions. The upper 32
bits of the 64-bit accumulator result are returned. All input and output
elements are 32-bit signed fixed-point data types.

The Vector Multiply block supports both continuous and discrete sample times.
This block also supports both little-endian and big-endian code generation.

Dialog Box

Algorithm In simulation, the Vector Multiply block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_mul32. During code
generation, this block calls the DSP_mul32 routine to produce optimized code.

See Also C62xMatrix Multiply

tic6000.book Page 65 Monday, February 6, 2006 10:39 AM

C62x Vector Negate

5-66

5C62x Vector NegatePurpose Negate each element of an input signal

Library C62x DSP Library—Math and Matrices

Description The Vector Negate block negates each element of a 32-bit signed fixed-point
input signal. For real signals, the number of input elements must be even and
at least four. For complex signals, the number of input elements must be at
least two. The output is the same data type as the input.

The Vector Negate block supports both continuous and discrete sample times.
This block also supports both little-endian and big-endian code generation.

Dialog Box

Algorithm In simulation, the Vector Negate block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_neg32. During code
generation, this block calls the DSP_neg32 routine to produce optimized code.

tic6000.book Page 66 Monday, February 6, 2006 10:39 AM

C62x Vector Sum of Squares

5-67

5C62x Vector Sum of SquaresPurpose Compute the sum of squares over each channel of a real input

Library C62x DSP Library—Math and Matrices

Description The Vector Sum of Squares block computes the sum of squares over each
channel of a real input. The number of samples per input channel must be even
and at least eight, and the input must be a 16-bit signed fixed-point data type.
The output is a 32-bit signed fixed-point scalar on each channel. The number
of fractional bits of the output is twice the number of fractional bits of the input.

The Vector Sum of Squares block supports both continuous and discrete sample
times. This block also supports both little-endian and big-endian code
generation.

Dialog Box

Algorithm In simulation, the Vector Sum of Squares block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_vecsumsq. During code
generation, this block calls the DSP_vecsumsq routine to produce optimized
code.

tic6000.book Page 67 Monday, February 6, 2006 10:39 AM

C62x Weighted Vector Sum

5-68

5C62x Weighted Vector SumPurpose Find the weighted sum of two input vectors

Library C62x DSP Library—Math and Matrices

Description The Weighted Vector Sum block computes the weighted sum of two inputs, X
and Y, according to (W*X)+Y. Inputs may be vectors or frame-based matrices.
The number of samples per channel must be a multiple of four. Inputs, weights,
and output are Q.15 data types, and weights must be in the range -1 < W < 1.

The Weighted Vector Sum block supports both continuous and discrete sample
times. This block also supports both little-endian and big-endian code
generation.

Dialog Box

Weight source
Specify the source of the weights:

•Specify via dialog—Enter the weights in the Weights (W) parameter
in the dialog

•Input port—Accept the weights from port W

tic6000.book Page 68 Monday, February 6, 2006 10:39 AM

C62x Weighted Vector Sum

5-69

Weights (W)
This parameter is visible only when Specify via dialog is specified for
the Weight source parameter. This parameter is tunable in simulation.
When the weights are

•All the same, you need only enter a scalar.

•Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. The length of this
vector must be a multiple of four.

•Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be a multiple of four,
and the number of columns of this matrix must be equal to the number
of channels.

Weights must be in the range -1 < W < 1.

Algorithm In simulation, the Weighted Vector Sum block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_w_vec. During code
generation, this block calls the DSP_w_vec routine to produce optimized code.

tic6000.book Page 69 Monday, February 6, 2006 10:39 AM

C6416DSK

5-70

5C6416DSKPurpose Set target preferences and memory map to generate code for the C6416 DSP
Starter Kit

Library Target Preferences in Embedded Target for TI C6000 DSP for TI DSP

Description Options on the block mask let you set features of code generation for your
C6416 DSP Starter Kit target. Adding this block to your Simulink model
provides access to the processor hardware settings you need to configure when
you generate code from Real-Time Workshop to run on the target.

Any model that you target to the C6416 DSK must include this block, or the
Custom C6000 target preferences block. Real-Time Workshop returns an error
message if a target preferences block is not present in your model.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to set the
target preferences for the model.

Among the processor and target options you specify here are the target board
information, memory mapping and layout, and how to allocate the various code
sections, such as compiler, DSP/BIOS, and custom sections.

Setting the options included in this dialog results in identifying your target to
Real-Time Workshop, Embedded Target for TI C6000 DSP, and Simulink, and
configuring the memory map for your target. Both are essential steps in the
process of targeting any board, custom or explicitly supported like the C6711
DSK or the DM642 EVM.

Unlike most other blocks, you cannot open the block dialog for this block until
you add the block to a model. When you try to open the block dialog, the block
attempts to connect to your target. It cannot make the connection when the
block is in the library and returns an error message.

Generating Code from Model Subsystems
Real-Time Workshop provides the ability to generate code from a selected
subsystem in a model. To generate code for the C6416 DSK from a subsystem,
the subsystem model must include a C6416DSK target preferences block.

tic6000.book Page 70 Monday, February 6, 2006 10:39 AM

C6416DSK

5-71

Dialog Box

All target preferences block dialogs provide tabbed access to panes that include
options you set for the target processor and target board:

• Board info—select the target board and processor, set the clock speed, and
identify the target.

• Memory—set the memory allocation and layout on the target processor
(memory mapping).

tic6000.book Page 71 Monday, February 6, 2006 10:39 AM

C6416DSK

5-72

• Sections—determine the arrangement and location of the sections on the
target processor such as where to put the DSP/BIOS information and where
to put compiler information.

Board Info Pane
The following options appear on the Board Info pane for the C6000 Target
Preferences dialog.

Board Type
Lets you enter the type of board you are targeting with the model. You can
enter Custom to support any board based on one of the supported processors, or
enter the name of one of the supported boards, such as C6711DSK. If you are
using one of the explicitly supported boards, choose the target preferences
block for that board and this field shows the proper board type.

Device
Lets you select the type of processor on the board you select in CCS board
name. The processor type you enter determines the contents and setting for
options on the Memory and Sections panes in this dialog. If you are targeting
one of the supported boards, Device is disabled and the selected device is fixed.

CPU Clock Speed (MHz)
Shows the clock speed of the processor on your target. When you enter a value,
you are not changing the CPU clock rate, you are reporting the actual rate. If
the value you enter does not match the rate on the target, your model real-time
results may be wrong, and code profiling results will not be correct.

You must enter the actual clock rate the board uses. The rate you enter here
does not change the rate on the board. Setting CPU clock speed to the actual
board rate allows the code you generate to run correctly according to the actual
clock rate of the hardware.

When you generate code for C6000 targets from Simulink models, you may
encounter the software timer. If your model does not include ADC or DAC
blocks, or when the processing rates in your model change (the model is
multirate), you automatically invoke the timer to handle and create interrupts
to drive your model.

Correctly generating interrupts for your model depends on the clock rate of the
CPU on your target. While the default clock rate is 100 MHz on the C6701
EVM, you can change the rate with the DIP switches on the board or from one

tic6000.book Page 72 Monday, February 6, 2006 10:39 AM

C6416DSK

5-73

of the software utilities provided by TI. C6711 DSK hardware uses a fixed clock
rate of 150 MHz; you cannot change the clock rate. Other C6000 processors
allow different clock speeds.

For the timer software to calculate the interrupts correctly, Embedded Target
for TI C6000 DSP needs to know the actual clock rate of your target processor
as you configured it. CPU clock speed lets you tell the timer the rate at which
your target CPU runs. You are telling the software timer what rate to use to
match the CPU rate.

The timer uses the CPU clock rate you specify in CPU clock speed to calculate
the time for each interrupt. For example, if your model includes a sine wave
generator block running at 1 KHz feeding a signal into an FIR filter block, the
timer needs to create interrupts to generate the sine wave samples at the
proper rate. Using the clock rate you choose, 100 MHz for example, the timer
calculates the sine generator interrupt period as follows for the sine block:

• Sine block rate = 1 KHz, or 0.001 s/sample

• CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires

• 100000000/1000 = 1 Sine block interrupt per 1000000 clock ticks

So you must report the correct clock rate or the interrupts come at the wrong
times and the results are incorrect.

Simulator
Select this option when you are targeting a simulator rather than a hardware
target. You must select Simulator to target your code to a C6000 simulator.

Enable High-Speed RTDX
Select this option to tell the code generation process to enable high-speed
RTDX for this model.

CCS Board Name
Contains a list of all the boards defined in CCS Setup. From the list of available
boards, select the one that you are targeting your code for.

CCS Processor Name
Lists the processors on the board you selected for targeting in CCS board
name. In most cases, only one name appears because the board has one

tic6000.book Page 73 Monday, February 6, 2006 10:39 AM

C6416DSK

5-74

processor. In the multiprocessor case, you select the processor by name from
the list.

Memory Pane
When you target any board, you need to specify the layout of the physical
memory on your processor and board to determine how use it for your program.
For supported boards, the board-specific target preferences blocks set the
default memory map.

The Memory pane contains memory options in three areas:

tic6000.book Page 74 Monday, February 6, 2006 10:39 AM

C6416DSK

5-75

• Physical Memory—specifies the processor and board memory map

• Heap—specifies whether you use a heap and determines the size in words

• L2 Cache—enables the L2 cache (where available) and sets the size in kB

Be aware that these options may affect the options on the Sections pane. You
can make selections here that change how you configure options on the
Sections pane.

Most of the information about memory segments and memory allocation is
available from the online help system for Code Composer Studio.

Physical Memory Options
This list shows the physical memory segments avaliable on the board and
processor. By default, target preferences blocks show the memory segments
found on the selected processor. In addition, the Memory pane on
preconfigured target preferences blocks shows the memory segments available
on the board, but off of the processor. Target preferences blocks set default
starting addresses, lengths, and contents of the default memory segments.

The default memory segments for each processor and board are different. For
example:

• Custom boards based on C670x processors provide IPRAM and IDRAM
memory segments by default.

• C6701 EVM boards provide IPRAM, IDRAM, SBSRAM, SDDRAM0, and
SDRAM1 memory segments by default

• C6711DSK boards provide SDRAM memory segments by default.

Name
When you highlight an entry on the Physical memory list, the name of the
entry appears here. To change the name of the existing memory sgment, select
it in the Physical memory list and then type the new name here.

Note You cannot change the names of default processor memory segments.

To add a new physical memory segment to the list, click Add, replace the
temporary label in Name with the one to use, and press Return. Your new
segment appears on the list.

tic6000.book Page 75 Monday, February 6, 2006 10:39 AM

C6416DSK

5-76

After you add the segment, you can configure the starting address, length, and
contents for the new segment. New segments start with code and data as the
type of content that can be stored in the segment (refer to the Contents option).

Names are case sensitive. NewSegment is not the same as newsegment or
newSegment.

Address
Address reports the starting address for the memory segment showing in
Name. Address entries are in hexadecimal format and limited only by the
board or processor memory.

When you are using a processor-specific preferences block, the starting address
shown is the default value. You can change the starting value by entering the
new value directly in Address when you select the memory segment to change.

Length
From the starting address, Length sets the length of the memory allocated to
the segment in Name. As in all memory entries, specify the length in
hexadecimal format, in minimum addressable data units (MADUs). For the
C6000 processor family, the MADU is 8 bytes, one word.

When you are using a processor-specific preferences block, the length shown is
the default value. You can change the value by entering the new value directly
in this option.

Contents
Contents details the kind of program sections that you can store in the memory
segment in Name. As the processor type for the target preferences block
changes, the kinds of information you store in listed memory segments may
change. Generally, the Contents list contains these strings:

• Code—allow code to be stored in the memory segment in Name.

• Data—allow data to be stored in the memory segment in Name.

• Code and Data—allow code and data to be stored in the memory segment in
Name. When you add a new memory segment, this is the default setting for
the contents of the new element.

You may add or use as many segments of each type as you need, within the
limits of the memory on your processor.

tic6000.book Page 76 Monday, February 6, 2006 10:39 AM

C6416DSK

5-77

Add
Click Add to add a new memory segment to the target memory map. When you
click Add, a new segment name appears, for example NEWMEM1, in Name and on
the Physical memory list. In Name, change the temporary name NEWMEM1 by
entering the new segment name. Entering the new name, or clicking Apply
updates the temporary name on the list to the name you enter.

Remove
This option lets you remove a memory segment from the memory map. Select
the segment to remove on the Physical memory list and click Remove to
delete the segment.

Create Heap
If your processor supports using a heap, as do the C6711 or C6701, for example,
selecting this option enables creating the heap, and enables the Heap size
option. Create heap is not available on processors that either do not provide
a heap or do not allow you to configure the heap.

Using this option you can create a heap in any memory segment on the
Physical memory list. Select the memory segment on the list and then select
Create heap to create a heap in the select segment. After you create the heap,
use the Heap size and Define label options to configure the heap.

The location of the heap in the memory segment is not under your control. The
only way to control the location of the heap in a segment is to make the segment
and the heap the same size. Otherwise, the compiler determines the location of
the heap in the segment.

Heap Size
After you select Create heap, this option lets you specify the size of the heap
in words. Enter the number of words in decimal format. When you enter the
heap size in decimal words, the system converts the decimal value to
hexadecimal format. You can enter the value directly in hexadecimal format as
well. Processors may support different maximum heap sizes.

Define Label
Selecting Create heap enables this option that allows you to name the heap.
Enter your label for the heap in the Heap label option.

tic6000.book Page 77 Monday, February 6, 2006 10:39 AM

C6416DSK

5-78

Heap Label
Enabled by selecting Define label, you use this option to provide the label for
the heap. Any combination of characters is accepted for the label, except
reserved characters in C/C++ compilers.

Enable L2 Cache
C621x, C671x, and C641x processors support an L2 cache memory structure
that you can configure as SRAM and partial cache. Both the data memory and
the program share this second-level memory. C620x DSPs do not support L2
cache memory and this option is not available when you choose one of the
C620x processors as your target.

If your processor supports the two-level memory scheme, this option enables
the L2 cache on the processor.

L2 Cache size
Once you enable the L2 cache, use this list to determine the size of the cache
allotted. Select the size of the cache from the list.

Sections Pane
Options on this pane let you specify where various program sections should go
in memory. Program sections are distinct from memory segments—sections
are portions of the executable code stored in contiguous memory locations.
Among the sections used generally are .text, .bss, .data, and .stack. Some
sections relate to the compiler, some to DSP/BIOS, and some can be custom
sections as you require.

For more information about program sections and objects, refer to the CCS
online help. Most of the definitions and descriptions in this section come from
CCS.

tic6000.book Page 78 Monday, February 6, 2006 10:39 AM

C6416DSK

5-79

Within this pane, you configure the allocation of sections for Compiler,
DSP/BIOS, and Custom needs.

tic6000.book Page 79 Monday, February 6, 2006 10:39 AM

C6416DSK

5-80

Here are brief definitions of the various kinds of sections in the lists. All
sections do not appear on both lists. The list on which the string appears is
shown in the table.

String Section List Description of the Section Contents

.args DSP/BIOS Argument buffers

.bss Compiler Static and global C variables in the code

.bios DSP/BIOS DSP/BIOS code if you are using DSP/BIOS
options in your program

.cinit Compiler Tables for initializing global and static
variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier and
string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global, defined as
far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS startup
initialization tables section

.hwi DSP/BIOS Dispatch code for interrupt service routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the target
program can read

.pinit Compiler Load allocation of the table of global object
constructors section.

.rtdx_text DSP/BIOS Code sections for the RTDX program
modules

.stack Compiler The global stack

tic6000.book Page 80 Monday, February 6, 2006 10:39 AM

C6416DSK

5-81

You can learn more about memory sections and objects in your Code Composer
Studio online help. Most of the definitions and descriptions in this section come
from the online help for CCS.

Compiler Sections
During program compilation, the C6000 compiler produces both uninitialized
and initialized blocks of data and code. These blocks get allocated into memory
as required by the configuration of your system. On the Compiler sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections. The initialized
sections are:

• .cinit
• .const
• .switch

• .text—created by the assembler.

These sections are uninitialized:

• .bss—created by the assembler.
• .far
• .stack

.switch Compiler Jump tables for switch statements in the
executable code

.sysdata DSP/BIOS Data about DSP/BIOS

.sysinit DSP/BIOS DSP/BIOS initialization startup code

.sysmem Compiler Dynamically allocated object in the code
containing the heap

.text Compiler Load allocation for the literal strings,
executable code, and compiler generated
constants

.trcdata DSP/BIOS TRC mask variable and its initial value
section load allocation

String Section List Description of the Section Contents

tic6000.book Page 81 Monday, February 6, 2006 10:39 AM

C6416DSK

5-82

• .sysmem

Other sections appear on the list as well:

• .data—created by the assembler. The C/C++ compiler does not use this
section.

• .cio
• .pinit

When you highlight a section on the list, Description shows a brief description
of the section. Also, Placement shows you where the section is presently
allocated in memory.

Description
Provides a brief explanation of the contents of the selected entry on the
Compiler sections list.

Placement
Shows you where the selected Compiler sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments as defined in
the phusical memory map on the Memory pane. Select one of the listed
memory segments to allocate the highlighted compiler section to the segment.

DSP/BIOS Sections
During program compilation, DSP/BIOS produces both uninitialized and
initialized blocks of data and code. These blocks get allocated into memory as
required by the configuration of your system. On the DSP/BIOS sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections.

Description
Provides a brief explanation of the contents of the selected DSP/BIOS sections
list entry

Placement
Shows where the selected DSP/BIOS sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments available on
C6000 processors, and changes based on the processor you are using.

tic6000.book Page 82 Monday, February 6, 2006 10:39 AM

C6416DSK

5-83

DSP/BIOS Object Placement
Distinct from the entries on the DSP/BIOS sections list, DSP/BIOS objects like
STS or LOG, if your project uses them, get placed in the memory segment you
select from the DSP/BIOS Object Placement list. All DSP/BIOS objects use
the same memory segment. You cannot select the location for individual
objects.

Custom Sections
When your program uses code or data sections that are not included in either
the Compiler sections or DSP/BIOS sections lists, you add the new sections
to this list. Initially, the Custom sections list contains no fixed entries, just a
placeholder for a section for you to define.

Name
You enter the name for your new section here. To add a new section, click Add.
Then replace the temporary name with the name to use. Although the
temporary name includes a period at the beginning you do not need to include
the period in your new name. Names are case sensitive. NewSection is not the
same as newsection, or newSection.

Placement
With your new section added to the Name list, select the memory segment to
which to add your new section. Within the restrictions imposed by the
hardware and compiler, you can select any segment that appears on the list.

Add
Clicking Add lets you configure a new entry to the list of custom sections. When
you click Add, the block provides a new temporary name in Name. Enter the
new section name to add the section to the Custom sections list. After typing
the new name, click Apply to add the new section to the list. Or click OK to add
the section to the list and close the dialog.

Remove
To remove a section from the Custom sections list, select the section to remove
and click Remove. The selected section disappears from the list.

DSP/BIOS Pane
Options on this pane let you specify how to configure tasking features of
DSP/BIOS.

tic6000.book Page 83 Monday, February 6, 2006 10:39 AM

C6416DSK

5-84

This pane provides options the asynchronous task scheduler uses when you
select the Incorporate DSP/BIOS option in the configuration set for your
model. By default, Incorporate DSP/BIOS is selected and the Embedded
Target for TI C6000 DSP creates separate DSP/BIOS tasks for each sample
time in your Simulink model.

DSP/BIOS tasking blocks provide parameters on their block dialogs so you can
specify the DSP/BIOS stack size and stack segment (where the stack is in
memory) for asynchronous tasks created by the DSP/BIOS Task and Triggered
Task blocks.

The code generation process uses the options on this pane to configure TSK
entries in the TSK Task Manager in CCS when it creates DSP/BIOS tasks.

When you choose not to use DSP/BIOS in your project, by clearing the
Incorporate DSP/BIOS the configuration set for your model, you disable the
options in this pane and Embedded Target for TI C6000 DSP uses an
interrupt-based scheduler. It does not create or use DSP/BIOS tasks.

For more information about tasks, refer to the Code Composer Studio online
help. Most of the definitions and descriptions in this section come from CCS.

tic6000.book Page 84 Monday, February 6, 2006 10:39 AM

C6416DSK

5-85

Within this pane, you configure the options for DSP/BIOS tasks, such as the
task manager and scheduler configuration. Note that the Sections pane
includes DSP/BIOS configuration options as well. The options specify the stack
use and locations on the stack for static and dynamic tasks.

Default stack size (bytes)
DSP/BIOS uses a stack to save and restore variables and CPU context
during thread preemption for task threads. This option sets the size of the
DSP/BIOS stack in bytes allocated for each task. 4096 bytes is the default
value. You can set any size up to the limits for the processor. Set the stack

tic6000.book Page 85 Monday, February 6, 2006 10:39 AM

C6416DSK

5-86

size so that tasks do not use more memory than you allocate. While any
task can use more memory than the stack includes, this might cause the
task to write into other memory or data areas, possibly causing
unpredictable behavior.

Stack segment for static tasks
Use this option to specify where to allocate the stack for static tasks. Static
tasks are created whether or not they are needed for operation, compared
to dynamic tasks that the system creates as needed. Tasks that your
program uses often might be good candidates for static tasks. Infrequently
used tasks usually work best as dynamic tasks.

The list offers options SDRAM and ISRAM for locating the stack in memory,
with SDRAM as the default section. The Memory pane provide more options
for the physical memory on the processor.

Stack segment for dynamic tasks
Like static tasks, dynamic tasks use a stack as well. Setting this option
specifies where to locate the stack for dynamic tasks. In this case, SDRAM is
the only valid stack location in memory.

See Also Custom C6000

tic6000.book Page 86 Monday, February 6, 2006 10:39 AM

C6416 DSK ADC

5-87

5C6416 DSK ADCPurpose Configure the codec and peripherals to convert analog data from the input
ports to digitized signal output for the processor

Library C6416 DSK Board Support in Embedded Target for TI C6000 DSP

Description Use the C6416 DSK ADC (analog-to-digital converter) block to capture and
digitize analog signals from the analog input jacks on the board. Placing an
C6416 DSK ADC block in your Simulink block diagram lets you use the AIC23
coder-decoder module (codec) on the C6416 DSK to convert an analog input
signal to a digital signal for the digital signal processor.

Most of the configuration options in the block affect the codec. However, the
Output data type, Samples per frame, and Scaling options relate to the
model you are using in Simulink, the signal processor on the board, or direct
memory access (DMA) on the board. In the following table, you find each option
listed with the C6416 DSK hardware affected.

You can select one of two input sources from the ADC source list:

• Line In—the codec accepts input from the line in connector (LINE IN) on the
board’s mounting bracket.

• Mic—the codec accepts input from the microphone connector (MIC IN) on
the board mounting bracket.

Option Affected Hardware

ADC Source Codec

Mic Codec

Output data type TMS320C6416 digital signal processor

Samples per frame Direct memory access module

Sample Rate Codec

Scaling TMS320C6416 digital signal processor

Word Length Codec

tic6000.book Page 87 Monday, February 6, 2006 10:39 AM

C6416 DSK ADC

5-88

Use the Stereo check box to indicate whether the audio input is monaural or
stereo. Clear the check box to choose monaural audio input. Select the check
box to enable stereo audio input. Monaural (mono) input is left channel only,
but the output sends left channel content to both the left and right output
channels; stereo uses the left and right channels on input and output.

The block uses frame-based processing of inputs, buffering the input data into
frames at the specified samples per frame rate. In Simulink, the block puts
monaural data into an N-element column vector. Stereo data input forms an
N-by-2 matrix with N data values and two stereo channels (left and right).

When the samples per frame setting is more than one, each frame of data is
either the N-element vector (monaural input) or N-by-2 matrix (stereo input).
For monaural input, the elements in each frame form the column vector of
input audio data. In the stereo format, the frame is the matrix of audio data
represented by the matrix rows and columns—the rows are the audio data
samples and the columns are the left and right audio channels.

When you select Mic for ADC source, you can select the +20 dB Mic gain boost
check box to add 20 dB to the microphone input signal before the codec digitizes
the signal.

tic6000.book Page 88 Monday, February 6, 2006 10:39 AM

C6416 DSK ADC

5-89

Dialog Box

ADC source
The input source to the codec. Line In is the default. Selecting Mic enables
the +20 dB Mic gain boost option.

+20 dB Mic gain boost
Boosts the input signal by +20dB when ADC source is Mic. Gain is applied
before analog-to-digital conversion.

Stereo
Indicates whether the input audio data is in monaural or stereo format.
Select the check box to enable stereo input. Clear the check box when you

tic6000.book Page 89 Monday, February 6, 2006 10:39 AM

C6416 DSK ADC

5-90

input monaural data. By default, stereo is enabled. Monaural data comes
from the right channel.

Sample rate
Sets the sample rate for the data output by the codec. Options are 8, 32,
44.1, 48, and 96 kHz, with a default of 8 kHz.

Word length
Sets the length of each data word output from the codec, since the input is
analog. You choose from 16-, 20-, 24-, and 32-bit options.

Output data type
Selects the word length and shape of the data from the codec. By default,
double is selected. Options are Double, Single, and Integer. To process
single and double data types, the block uses emulated floating-point
instructions on the C6416 processor.

Scaling
Selects whether the codec data is unmodified, or normalized to the output
range to ±1.0, based on the codec data format. Select either Normalize or
Integer from the list. Normalize is the default setting.

Samples per frame
Creates frame-based outputs from sample-based inputs. This parameter
specifies the number of samples of the signal the block buffers internally
before it sends the digitized signals, as a frame vector, to the next block in
the model. 64 samples per frame is the default setting. Notice that the
frame rate depends on the sample rate and frame size. For example, if your
input is 8000 samples per second, and you select 32 samples per frame, the
frame rate is 250 frames per second. The throughput remains the same at
8000 samples per second.

Inherit sample time
Selects whether the block inherits the sample time from the model base
rate/Simulink base rate as determined in the Solver options in
Configuration Parameters. Selecting Inherit sample time directs the
block to use the specified rate in model configuration. Entering -1
configures the block to accept the sample rate from the upstream HWI,
Task, or Triggered Task blocks.

tic6000.book Page 90 Monday, February 6, 2006 10:39 AM

C6416 DSK ADC

5-91

See Also C6416 DSK DAC

tic6000.book Page 91 Monday, February 6, 2006 10:39 AM

C6416 DSK DAC

5-92

5C6416 DSK DACPurpose Configure the codec and peripherals to convert digital input to analog output
at the analog output port of the board

Library C6416 DSK Board Support in Embedded Target for TI C6000 DSP

Description Adding the C6416 DSK DAC (digital-to-analog converter) block to your
Simulink model provides the means to output an analog signal to the LINE
OUT connection on the C6416 DSK board. When you add the C6416 DSK DAC
block, the digital signal received by the codec is converted to an analog signal.
After converting the digital signal to analog form (digital-to-analog (D/A)
conversion), the codec sends the signal to the output jack.

One of the configuration options in the block affects the codec. The remaining
options relate to the model you are using in Simulink and the signal processor
on the board. In the following table, you find each option listed with the C6416
DSK hardware affected by your selection.

Option Affected Hardware

Overflow mode TMS320C6416 Digital Signal Processor

Scaling TMS320C6416 Digital Signal Processor

Word Length Codec

tic6000.book Page 92 Monday, February 6, 2006 10:39 AM

C6416 DSK DAC

5-93

Dialog Box

Word length
Sets the DAC to interpret the input data word length. Without this setting,
the DAC cannot convert the digital data to analog correctly. The default
value is 16 bits, with options of 20, 24, and 32 bits. The word length you set
here should always match the ADC setting.

Sampling rate
Sets the sampling rate for the block output to the output ports on the
target. Select from the list of available rates.

Scaling
Selects whether the input to the codec represents unmodified data, or data
that has been normalized to the range ±1.0. Matching the setting for the
C6416 DSK ADC block is usually appropriate here.

Overflow mode
Determines how the codec responds to data that is outside the range
specified by the Scaling parameter. You can choose Wrap or Saturate to
handle the result of an overflow in an operation. If efficient operation
matters, Wrap is the more efficient mode.

See Also C6416 DSK ADC

tic6000.book Page 93 Monday, February 6, 2006 10:39 AM

C6416 DSK DIP Switch

5-94

5C6416 DSK DIP SwitchPurpose Simulate or read the user-defined DIP switches on the C6416 DSK

Library C6416 DSK Board Support in Embedded Target for TI C6000 DSP

Description Added to your model, this block behaves differently in simulation than in code
generation and targeting.

In Simulation—the options Switch 0, Switch 1, Switch 2, and Switch 3
generate output to simulate the settings of the user-defined dual inline pin
(DIP) switches on your C6416 DSK. Each option turns the associated DIP
switch on when you select it. The switches are independent of one another.

By defining the switches to represent actions on your target, DIP switches let
you modify the operation of your process by reconfiguring the switch settings.

Use the Data type to specify whether the DIP switch options output an integer
or a logical string of bits to represent the status of the switches. The table that
follows presents all the option setting combinations with the result of your
Data type selection.

Option Settings to Simulate the User DIP Switches on the C6416 DSK

Switch 0
(LSB)

Switch 1 Switch 2 Switch 3
(MSB)

Boolean
Output

Integer Output

Cleared Cleared Cleared Cleared 0000 0

Selected Cleared Cleared Cleared 0001 1

Cleared Selected Cleared Cleared 0010 2

Selected Selected Cleared Cleared 0011 3

Cleared Cleared Selected Cleared 0100 4

Selected Cleared Selected Cleared 0101 5

Cleared Selected Selected Cleared 0110 6

Selected Selected Selected Cleared 0111 7

Cleared Cleared Cleared Selected 1000 8

Selected Cleared Cleared Selected 1001 9

tic6000.book Page 94 Monday, February 6, 2006 10:39 AM

C6416 DSK DIP Switch

5-95

Selecting the Integer data type results in the switch settings generating
integers in the range from 0 to 15 (uint8), corresponding to converting the
string of individual switch settings to a decimal value. In the Boolean data
type, the output string presents the separate switch setting for each switch,
with the Switch 0 status represented by the least significant bit (LSB) and the
status of Switch 3 represented by the most significant bit (MSB).

In Code generation and targeting—the code generated by the block reads the
physical switch settings of the user switches on the board and reports them as
shown in the table above. Your process uses the result in the same way whether
in simulation or in code generation. In code generation and when running your
application, the block code ignores the settings for Switch 0, Switch 1,
Switch 2 and Switch 3 in favor of reading the hardware switch settings. When
the block reads the DIP switches, it reports the results as either a Boolean
string or an integer value as the table below shows.

Cleared Selected Cleared Selected 1010 10

Selected Selected Cleared Selected 1011 11

Cleared Cleared Selected Selected 1100 12

Selected Cleared Selected Selected 1101 13

Cleared Selected Selected Selected 1110 14

Selected Selected Selected Selected 1111 15

Option Settings to Simulate the User DIP Switches on the C6416 DSK (Continued)

Switch 0
(LSB)

Switch 1 Switch 2 Switch 3
(MSB)

Boolean
Output

Integer Output

Output Values From The User DIP Switches on the C6416 DSK

Switch 0
(LSB)

Switch 1 Switch 2 Switch 3
(MSB)

Boolean
Output

Integer Output

Off Off Off Off 0000 0

On Off Off Off 0001 1

Off On Off Off 0010 2

tic6000.book Page 95 Monday, February 6, 2006 10:39 AM

C6416 DSK DIP Switch

5-96

On On Off Off 0011 3

Off Off On Off 0100 4

On Off On Off 0101 5

Off On On Off 0110 6

On On On Off 0111 7

Off Off Off On 1000 8

On Off Off On 1001 9

Off On Off On 1010 10

On On Off On 1011 11

Off Off On On 1100 12

On Off On On 1101 13

Off On On On 1110 14

On On On On 1111 15

Output Values From The User DIP Switches on the C6416 DSK (Continued)

Switch 0
(LSB)

Switch 1 Switch 2 Switch 3
(MSB)

Boolean
Output

Integer Output

tic6000.book Page 96 Monday, February 6, 2006 10:39 AM

C6416 DSK DIP Switch

5-97

Dialog Box

Opening this dialog causes a running simulation to pause. Refer to “Changing
Source Block Parameters” in your online Simulink documentation for details.

Switch 0
Simulate the status of the user-defined DIP switch on the board.

Switch 1
Simulate the status of the user-defined DIP switch on the board.

Switch 2
Simulate the status of the user-defined DIP switch on the board.

Switch 3
Simulate the status of the user-defined DIP switch on the board.

Data type
Determines how the block reports the status of the user-defined DIP
switches. Boolean is the default, indicating that the output is a vector of
four logical values.

tic6000.book Page 97 Monday, February 6, 2006 10:39 AM

C6416 DSK DIP Switch

5-98

Each vector element represents the status of one DIP switch; the first is
Switch 0 and the fourth is Switch 3. The data type Integer converts the
logical string to an equivalent unsigned 8-bit (uint8) value. For example,
when the logical string generated by the switches is 0101, the conversion
yields 5—the MSB is 0 and the LSB is 1.

Sample time
Specifies the time between samples of the signal. The default is 1 second
between samples, for a sample rate of one sample per second
(1/Sample time).

tic6000.book Page 98 Monday, February 6, 2006 10:39 AM

C6416 DSK LED

5-99

5C6416 DSK LEDPurpose Control the user-defined light emitting diodes on the C6416 DSK

Library C6416 DSK Board Support in Embedded Target for TI C6000 DSP

Description Adding the C6416 DSK LED block to your Simulink block diagram lets you
trigger the user light emitting diodes (LED) on the C6416 DSK. To use the
block, send a nonzero real scalar to the block. The C6416 DSK LED block
controls all four user LEDs located on the C6416 DSK.

When you add this block to a model, and send an integer to the block input, the
block sets the LED state based on the input value it receives:

• When the block receives an input value equal to 0, the specified LEDs are
turned off (disabled), 0000

• When the block receives a nonzero input value, the specified LEDs are
turned on (enabled), 0001 to 1111

To activate the block, send it an integer in the range 0 to 15. Vectors do not
work to activate LEDs; nor do complex numbers as scalars or vectors.

For example, sending the value 6 turns on the diodes to show 0110
(off/on/on/off). 13 turns on the diodes to show 1101.

All LEDs maintain their state until the C6416 DSK LED block receives an
input value that changes the state. Enabled LEDs stay on until the block
receives an input value that turns the LEDs off; disabled LEDs stay off until
turned on. Resetting the C6416 DSK turns off all user LEDs. When you start
an application, the LEDs are turned off by default.

Dialog Box

This dialog does not have any user-selectable options.

tic6000.book Page 99 Monday, February 6, 2006 10:39 AM

C6416 DSK RESET

5-100

5C6416 DSK RESETPurpose Reset the C6416 DSK to initial conditions

Library C6416 DSK Board Support in Embedded Target for TI C6000 DSP

Description Double-clicking this block in a Simulink model window resets the C6416 DSK
that is running the executable code built from the model. When you
double-click the C6416 DSK RESET block, the block runs the software reset
function provided by CCS that resets the processor on your C6416 DSK.
Applications running on the board stop and the signal processor returns to the
initial conditions you defined.

Before you build and download your model, add the block to the model as
a stand-alone block. You do not need to connect the block to any block in the
model. When you double-click this block in the block library, it resets your
C6416 DSK. In other words, any time you double-click a C6416 DSK RESET
block, you reset your C6416 DSK.

Dialog Box This block does not have settable options and does not provide a user interface
dialog.

tic6000.book Page 100 Monday, February 6, 2006 10:39 AM

C64x Autocorrelation

5-101

5C64x AutocorrelationPurpose Compute the autocorrelation of an input vector or frame-based matrix

Library C64x DSP Library—Math and Matrices

Description The C64x Autocorrelation block computes the autocorrelation of an input
vector or frame-based matrix. For frame-based inputs, the autocorrelation is
computed along each of the input’s columns. The number of samples in the
input channels must be an integer multiple of eight. Input and output signals
are real and Q.15.

Autocorrelation blocks support discrete sample times and little-endian code
generation only.

Dialog Box

Compute all non-negative lags
When you select this parameter, the autocorrelation is performed using all
nonnegative lags, where the number of lags is one less than the length of
the input. The lags produced are therefore in the range
[0, length(input)-1]. When this parameter is not selected, you specify the
lags used in Maximum non-negative lag (less than input length).

Maximum non-negative lag (less than input length)
Specify the maximum lag (maxLag) the block should use in performing the
autocorrelation. The lags used are in the range [0, maxLag]. The maximum

tic6000.book Page 101 Monday, February 6, 2006 10:39 AM

C64x Autocorrelation

5-102

lag must be odd, and (maxLag+1) must be divisible by 4, such as maxLag
equal to 3, 7, or 19. This parameter is enabled when you clear the
Compute all non-negative lags parameter.

Algorithm In simulation, the Autocorrelation block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_autocor. During code
generation, this block calls the DSP_autocor routine to produce optimized code.

tic6000.book Page 102 Monday, February 6, 2006 10:39 AM

C64x Bit Reverse

5-103

5C64x Bit ReversePurpose Bit-reverse the positions of the elements of each channel of a complex input
signal

Library C64x DSP Library—Transforms

Description The C64x Bit Reverse block bit-reverses the elements of each channel of
a complex input signal X. The Bit Reverse block is used primarily to provide
correctly-ordered inputs and outputs to or from blocks that perform FFTs.
Inputs to this block must be 16-bit fixed-point data types. Input vector lengths
must be a power of two. Because you use this block with FFT blocks the input
vector length must be a power of two.

The Bit Reverse block supports discrete sample times and little-endian code
generation only.

Dialog Box

Algorithm In simulation, the Bit Reverse block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_bitrev_cplx. During
code generation, this block calls the DSP_bitrev_cplx routine to produce
optimized code.

Examples The Bit Reverse block reorders the output of the C64x Radix-2 FFT in the
model below to natural order.

The following code calculates the same FFT in the workspace. The output from
this calculation, y2, is displayed side-by-side with the output from the model, c.

tic6000.book Page 103 Monday, February 6, 2006 10:39 AM

C64x Bit Reverse

5-104

The outputs match, showing that the Bit Reverse block reorders the Radix-2
FFT output to natural order:

k = 4;
n = 2^k;
xr = zeros(n, 1);
xr(2) = 0.5;
xi = zeros(n, 1);
x2 = complex(xr, xi);
y2 = fft(x2);

[y2, c]
 0.5000 0.5000
 0.4619 - 0.1913i 0.4619 - 0.1913i
 0.3536 - 0.3536i 0.3535 - 0.3535i
 0.1913 - 0.4619i 0.1913 - 0.4619i
 0 - 0.5000i 0 - 0.5000i
 -0.1913 - 0.4619i -0.1913 - 0.4619i
 -0.3536 - 0.3536i -0.3535 - 0.3535i
 -0.4619 - 0.1913i -0.4619 - 0.1913i
 -0.5000 -0.5000
 -0.4619 + 0.1913i -0.4619 + 0.1913i
 -0.3536 + 0.3536i -0.3535 + 0.3535i
 -0.1913 + 0.4619i -0.1913 + 0.4619i
 0 + 0.5000i 0 + 0.5000i
 0.1913 + 0.4619i 0.1913 + 0.4619i
 0.3536 + 0.3536i 0.3535 + 0.3535i
 0.4619 + 0.1913i 0.4619 + 0.1913i

See Also C64x Radix-2 FFT, C64x Radix-2 IFFT

tic6000.book Page 104 Monday, February 6, 2006 10:39 AM

C64x Block Exponent

5-105

5C64x Block ExponentPurpose Return the minimum exponent (number of extra sign bits) found in each
channel of an input

Library C64x DSP Library—Math and Matrices

Description The C64x Block Exponent block first computes the number of extra sign bits of
all values in each channel of an input signal, and then returns the minimum
number of sign bits found in each channel. The number of elements in each
input channel must be a multiple of eight. Input elements must be 32-bit
signed fixed-point data types. The output is a vector of 16-bit integers—one
integer for each channel of the input signal.

This block is useful for determining whether every sample in a channel is using
extra sign bits. If so, you can scale your signal by the minimum number of extra
sign bits to eliminate the common extra bits. This increases the representable
precision and decreases the representable range of the signal.

Block Exponent blocks support both continuous and discrete sample times.
This block also supports both little-endian and big-endian code generation.

Dialog Box

Algorithm In simulation, the Block Exponent block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_bexp. During code
generation, this block calls the DSP_bexp routine given to produce optimized
code.

tic6000.book Page 105 Monday, February 6, 2006 10:39 AM

C64x Complex FIR

5-106

5C64x Complex FIRPurpose Filter a complex input signal using a complex FIR filter

Library C64x DSP Library—Filtering

Description The C64x Complex FIR block filters a complex input signal X using a complex
FIR filter. This filter is implemented using a direct form structure. Each input
channel must contain an integer multiple of four samples, with four samples as
the minimum required.

The number of FIR filter coefficients, which are given as elements of the input
vector H, must be even. The product of the number of elements of X and the
number of elements of H must be at least four. Inputs, coefficients, and outputs
are all Q.15 data types. For each channel, the number of input elements must
be a multiple of four.

The Complex FIR block supports discrete sample times and little-endian code
generation only.

Dialog Box

Coefficient source
Specify the source of the filter coefficients:

•Specify via dialog—Enter the coefficients in the Coefficients (H)
parameter in the dialog

tic6000.book Page 106 Monday, February 6, 2006 10:39 AM

C64x Complex FIR

5-107

•Input port—Accept the coefficients from port H. This port must have the
same rate as the input data port X. Choosing this option adds an input
port to the block.

Coefficients (H)
Designate the filter coefficients in vector format. There must be an even
number of coefficients. This parameter is visible only when Specify via
dialog is selected for the Coefficient source parameter. This parameter
is tunable in simulation.

Initial conditions
Lets you provide initial conditions for the filter. If your initial conditions for
the channels are

•All the same, enter a scalar that applies to all channels.

•Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. These conditions then
apply to all channels. The length of this vector must be one less than the
number of coefficients.

•Different across channels, enter a matrix containing all initial conditions
for every individual channel. The number of rows of this matrix must be
one less than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

You may enter real-valued initial conditions. Zero-valued imaginary parts
will be assumed.

Algorithm In simulation, the Complex FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fir_cplx. During code
generation, this block calls the DSP_fir_cplx routine to produce optimized
code.

See Also C64x General Real FIR, C64x Radix-4 Real FIR, C64x Radix-8 Real FIR,
C64x Symmetric Real FIR

tic6000.book Page 107 Monday, February 6, 2006 10:39 AM

C64x Convert Floating-Point to Q.15

5-108

5C64x Convert Floating-Point to Q.15Purpose Convert an input signal to a Q.15 fixed-point signal

Library C64x DSP Library—Conversions

Description The C64x Convert Floating-Point to Q.15 block converts a single-precision
floating-point input signal to a Q.15 output signal. Input can be real or
complex. For real inputs, the number of input samples must be even.

The Convert Floating-Point to Q.15 block supports both continuous and
discrete sample times. This block also supports both little-endian and
big-endian code generation.

Dialog Box

Algorithm In simulation, the Convert Floating-Point to Q.15 block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fltoq15. During code
generation, this block calls the DSP_fltoq15 routine to produce optimized code.

See Also C64x Convert Q.15 to Floating Point

tic6000.book Page 108 Monday, February 6, 2006 10:39 AM

C64x Convert Q.15 to Floating-Point

5-109

5C64x Convert Q.15 to Floating-PointPurpose Convert a Q.15 fixed-point signal to a single-precision floating-point signal

Library C64x DSP Library—Conversions

Description The C64x Convert Q.15 to Floating-Point block converts a Q.15 input signal to
a single-precision floating-point output signal. Input can be real or complex.
For real inputs, the number of input samples must be even.

The Convert Q.15 to Floating-Point block supports both continuous and
discrete sample times. This block also supports both little-endian and
big-endian code generation.

Dialog Box

Algorithm In simulation, the Convert Q.15 to Floating-Point block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_q15tofl. During code
generation, this block calls the DSP_q15tofl routine to produce optimized code.

See Also C64x Convert Floating-Point to Q.15

tic6000.book Page 109 Monday, February 6, 2006 10:39 AM

C64x FFT

5-110

5C64x FFTPurpose Compute the decimation-in-frequency forward FFT of a complex input vector

Library C64x DSP Library—Transforms

Description The C64x FFT block computes the decimation-in-frequency forward FFT, with
interstage scaling, of each channel of a complex input signal. The input length
of each channel must be both a power of two and in the range 8 to 16,384,
inclusive. The input must also be in natural (linear) order. The output of this
block is a complex signal in natural order. Inputs and outputs are all signed
16-bit fixed-point data types.

The fft16x16r routine used by this block employs butterfly stages to perform
the FFT. The number of butterfly stages used, S, depends on the input length
L = 2^k. If k is even, then S = k/2. If k is odd, then S = (k+1)/2.

If k is even, then L is a power of two as well as a power of four, and this block
performs all S stages with radix-4 butterflies to compute the output. If k is odd,
then L is a power of two but not a power of four. In that case this block performs
the first (S-1) stages with radix-4 butterflies, followed by a final stage using
radix-2 butterflies.

To minimize noise, the FFT block also implements a divide-by-two scaling on
the output of each stage except for the last. Therefore, in order to ensure that
the gain of the block matches that of the theoretical FFT, the FFT block offsets
the location of the binary point of the output data type by (S-1) bits to the right
relative to the location of the binary point of the input data type. That is, the
number of fractional bits of the output data type equals the number of
fractional bits of the input data type minus (S-1).

The FFT block supports both continuous and discrete sample times. This block
supports little-endian code generation.

OutputFractionalBits InputFractionalBits S 1–()–=

tic6000.book Page 110 Monday, February 6, 2006 10:39 AM

C64x FFT

5-111

Dialog Box

Algorithm In simulation, the FFT block is equivalent to the TMS320C64x DSP Library
assembly code function DSP_fft16x16r. During code generation, this block
calls the DSP_fft16x16r routine to produce optimized code.

See Also C64x Radix-2 FFT, C64x Radix-2 IFFT

tic6000.book Page 111 Monday, February 6, 2006 10:39 AM

C64x General Real FIR

5-112

5C64x General Real FIRPurpose Filter a real input signal using a real FIR filter

Library C64x DSP Library—Filtering

Description The C64x General Real FIR block filters a real input signal X using a real FIR
filter. This filter is implemented using a direct form structure. Signal X must
contain at least four samples per channel and the number of samples must be
an integer multiple of four.

The filter coefficients are specified by a real vector H, which must contain at
least five elements. The coefficients must be in reversed order. All inputs,
coefficients, and outputs are Q.15 signals.

The General Real FIR block supports discrete sample times and both
little-endian and big-endian code generation.

Dialog Box

Coefficient source
Specify the source of the filter coefficients:

•Specify via dialog—Enter the coefficients in the Coefficients (H)
parameter in the dialog

•Input port—Accept the coefficients from port H. This port must have the
same rate as the input data port X

tic6000.book Page 112 Monday, February 6, 2006 10:39 AM

C64x General Real FIR

5-113

Coefficients (H)
Designate the filter coefficients in vector format. This parameter is only
visible when Specify via dialog is selected for the Coefficient source
parameter. This parameter is tunable in simulation.

Initial conditions
If the initial conditions are

•All the same, you need only enter a scalar.

•Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. The length of this vector
must be one less than the number of coefficients.

•Different across channels, enter a matrix containing all initial conditions.
The number of rows of this matrix must be one less than the number of
coefficients, and the number of columns of this matrix must be equal to
the number of channels.

The initial conditions must be real.

Algorithm In simulation, the General Real FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fir_gen. During code
generation, this block calls the DSP_fir_gen routine to produce optimized code.

See Also C64x Complex FIR, C64x Radix-4 Real FIR, C64x Radix-8 Real FIR,
C64x Symmetric Real FIR

tic6000.book Page 113 Monday, February 6, 2006 10:39 AM

C64x LMS Adaptive FIR

5-114

5C64x LMS Adaptive FIRPurpose Filter a scalar input using least-mean-square adaptive filtering

Library C64x DSP Library—Filtering

Description The C64x LMS Adaptive FIR block performs least-mean-square (LMS)
adaptive filtering. This filter is implemented using a direct form structure.

The following constraints apply to the inputs and outputs of this block:

• The scalar input must be a Q.15 data type.

• The scalar input must be a Q.15 data type.

• The scalar output is a Q1.30 data type.

• The output has length equal to the number of filter taps and is a Q.15 data
type. The number of filter taps must be a positive integer that is a multiple
of four.

This block performs LMS adaptive filtering according to the equations

and

where

• designates the time step.

• is a vector composed of the current and last scalar inputs.

• is the desired signal. The output converges to as the filter converges.

• is a vector composed of the current set of filter taps.

• is the error, or .

• is the step size.

For this block, the input and the output are defined by

X

B

R

H

e n 1+() d n 1+() H n() X n 1+()⋅[]–=

H n 1+() H n() μe n 1+() X n 1+()⋅[]+=

n

X nH 1–

d R d

H

e d H n() X n 1+()⋅[]–

μ

B R

B μe n 1+()=

R H n() X n 1+()⋅=

tic6000.book Page 114 Monday, February 6, 2006 10:39 AM

C64x LMS Adaptive FIR

5-115

which combined with the first two equations, result in the following equations
that this block follows:

 and must be produced externally to the LMS Adaptive FIR block. See
“Examples” below for a sample model where this is done.

The LMS Adaptive FIR block supports discrete sample times and both
little-endian and big-endian code generation.

Dialog Box

Number of FIR filter taps
Designate the number of filter taps. The number of taps must be a positive
integer that is also a multiple of four.

Initial value of filter taps
Enter the initial value of the filter taps.

Output filter coefficients H?
If selected, the filter taps are produced as output H. If not selected, H is
suppressed.

e n 1+() d n 1+() R–=

H n 1+() H n() B X n 1+()⋅[]+=

d B

tic6000.book Page 115 Monday, February 6, 2006 10:39 AM

C64x LMS Adaptive FIR

5-116

Algorithm In simulation, the LMS Adaptive FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_firlms2. During code
generation, this block calls the DSP_firlms2 routine to produce optimized code.

Examples The following model uses the LMS Adaptive FIR block.

The portion of the model enclosed by the dashed line produces the signal and
feeds it back into the LMS Adaptive FIR block. The inputs to this region are
and the desired signal , and the output of this region is the vector of filter taps

. Thus this region of the model acts as a canonical LMS adaptive filter. For
example, compare this region to the adaptfilt.lms function in the Filter
Design Toolbox. adaptfilt.lms performs canonical LMS adaptive filtering and
has the same inputs and output as the outlined section of this model.

To use the LMS Adaptive FIR block you must create the input in some way
similar to the one shown here. You must also provide the signals and . This
model simulates the desired signal by feeding into a digital filter block.
You can simulate your desired signal in a similar way, or you may bring in
from the workspace with a From Workspace or codec block.

X d

e B

B
X

d
H

B
X d

d X
d

tic6000.book Page 116 Monday, February 6, 2006 10:39 AM

C64x Matrix Multiply

5-117

5C64x Matrix MultiplyPurpose Perform matrix multiplication on two input signals

Library C64x DSP Library—Math and Matrices

Description The C64x Matrix Multiply block multiplies two input matrices A and B. Inputs
and outputs are real, 16-bit, signed fixed-point data types. This block wraps
overflows when they occur.

The product of the two 16-bit inputs results in a 32-bit accumulator value. The
Matrix Multiply block, however, only outputs 16 bits. You can choose to output
the highest or second-highest 16 bits of the accumulator value.

Alternatively, you can choose to output 16 bits according to how many
fractional bits you want in the output. The number of fractional bits in the
accumulator value is the sum of the fractional bits of the two inputs.

Therefore R+S is the location of the binary point in the accumulator value. You
can select 16 bits in relation to this fixed position of the accumulator binary
point to give the desired number of fractional bits in the output (see “Examples”
below). You can either require the output to have the same number of fractional
bits as one of the two inputs, or you can specify the number of output fractional
bits in the Number of fractional bits in output parameter.

The Matrix Multiply block supports both continuous and discrete sample
times. This block also supports both little-endian and big-endian code
generation.

Input A Input B Accumulator
Value

Total Bits 16 16 32

Fractional Bits R S R + S

tic6000.book Page 117 Monday, February 6, 2006 10:39 AM

C64x Matrix Multiply

5-118

Dialog Box

Set fractional bits in output to
Only 16 bits of the 32 accumulator bits are output from the block. Choose
which 16 bits to output from the list:

•Match input A—Output the 16 bits of the accumulator value that cause
the number of fractional bits in the output to match the number of
fractional bits in input A (or R in the discussion above).

•Match input B—Output the 16 bits of the accumulator value that cause
the number of fractional bits in the output to match the number of
fractional bits in input B (or S in the discussion above).

•Match high bits of acc. (b31:b16)—Output the highest 16 bits of the
accumulator value.

•Match high bits of prod. (b30:b15)—Output the second-highest 16
bits of the accumulator value.

•User-defined—Output the 16 bits of the accumulator value that cause
the number of fractional bits of the output to match the value specified in
the Number of fractional bits in output parameter.

Number of fractional bits in output
Specify the number of bits to the right of the binary point in the output.
This parameter is enabled only when you select User-defined for Set
fractional bits in output to.

tic6000.book Page 118 Monday, February 6, 2006 10:39 AM

C64x Matrix Multiply

5-119

Algorithm In simulation, the Matrix Multiply block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_mat_mul. During code
generation, this block calls the DSP_mat_mul routine to produce optimized code.

Examples Example 1 Suppose A and B are both Q.15. The data type of the resulting
accumulator value is therefore the 32-bit data type Q1.30 (R + S = 30). In the
accumulator, bits 31:30 are the sign and integer bits, and bits 29:0 are the
fractional bits. The following table shows the resulting data type and
accumulator bits used for the output signal for different settings of the Set
fractional bits in output to parameter.

Example 2 Suppose A is Q12.3 and B is Q10.5. The data type of the resulting
accumulator value is therefore Q23.8 (R + S = 8). In the accumulator, bits 31:8
are the sign and integer bits, and bits 7:0 are the fractional bits. The following
table shows the resulting data type and accumulator bits used for the output
signal for different settings of the Set fractional bits in output to
parameter.

See Also C64x Vector Multiply

Set fractional bits in output to Data Type Accumulator Bits

Match input A Q.15 b30:b15

Match input B Q.15 b30:b15

Match high bits of acc. Q1.14 b31:b16

Match high bits of prod. Q.15 b30:b15

Set fractional bits in output to Data Type Accumulator Bits

Match input A Q12.3 b20:b5

Match input B Q10.5 b18:b3

Match high bits of acc. Q23.-8 b31:b16

Match high bits of prod. Q22.-7 b30:b15

tic6000.book Page 119 Monday, February 6, 2006 10:39 AM

C64x Matrix Transpose

5-120

5C64x Matrix TransposePurpose Compute the matrix transpose of an input signal

Library C64x DSP Library—Math and Matrices

Description The C64x Matrix Transpose block transposes an input matrix or vector. A 1-D
input is treated as a column vector and transposed to a row vector. Input and
output signals are any real, 16-bit, signed fixed-point data type. Both the
number of rows and the number of columns must be multiples of four.

The Matrix Transpose block supports both continuous and discrete sample
times. This block also supports both little-endian and big-endian code
generation.

Dialog Box

Algorithm In simulation, the Matrix Transpose block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_mat_trans. During
code generation, this block calls the DSP_mat_trans routine to produce
optimized code.

tic6000.book Page 120 Monday, February 6, 2006 10:39 AM

C64x Radix-2 FFT

5-121

5C64x Radix-2 FFTPurpose Compute the radix-2 decimation-in-frequency forward FFT of a complex input
vector

Library C64x DSP Library—Transforms

Description The C64x Radix-2 FFT block computes the radix-2 decimation-in-frequency
forward FFT of each channel of a complex input signal. The input length of
each channel must be both a power of two and in the range 16 to 32,768,
inclusive. The input must also be in natural (linear) order. The output of this
block is a complex signal in bit-reversed order. Inputs and outputs are signed
16-bit fixed-point data types, and the output data type matches the input data
type.

You can use the C64x Bit Reverse block to reorder the output of the Radix-2
FFT block to natural order.

The Radix-2 FFT block supports both continuous and discrete sample times.
This block supports little-endian code generation.

Dialog Box

Algorithm In simulation, the Radix-2 FFT block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_radix2. During code
generation, this block calls the DSP_radix2 routine to produce optimized code.

Examples The output of the Radix-2 FFT block is bit-reversed. This example shows you
how to use the C64x Bit Reverse block to reorder the output of the Radix-2 FFT
block to natural order.

tic6000.book Page 121 Monday, February 6, 2006 10:39 AM

C64x Radix-2 FFT

5-122

The following code calculates the same FFT as the above model in the
workspace. The output from this calculation, y2, is then displayed side-by-side
with the output from the model, c. The outputs match, showing that the Bit
Reverse block does reorder the Radix-2 FFT block output to natural order:

k = 4;
n = 2^k;
xr = zeros(n, 1);
xr(2) = 0.5;
xi = zeros(n, 1);
x2 = complex(xr, xi);
y2 = fft(x2);

[y2, c]
 0.5000 0.5000
 0.4619 - 0.1913i 0.4619 - 0.1913i
 0.3536 - 0.3536i 0.3535 - 0.3535i
 0.1913 - 0.4619i 0.1913 - 0.4619i
 0 - 0.5000i 0 - 0.5000i
 -0.1913 - 0.4619i -0.1913 - 0.4619i
 -0.3536 - 0.3536i -0.3535 - 0.3535i
 -0.4619 - 0.1913i -0.4619 - 0.1913i
 -0.5000 -0.5000
 -0.4619 + 0.1913i -0.4619 + 0.1913i
 -0.3536 + 0.3536i -0.3535 + 0.3535i
 -0.1913 + 0.4619i -0.1913 + 0.4619i
 0 + 0.5000i 0 + 0.5000i
 0.1913 + 0.4619i 0.1913 + 0.4619i
 0.3536 + 0.3536i 0.3535 + 0.3535i

 0.4619 + 0.1913i 0.4619 + 0.1913i

See Also C64x Bit Reverse, C64x FFT, C64x Radix-2 IFFT

tic6000.book Page 122 Monday, February 6, 2006 10:39 AM

C64x Radix-2 IFFT

5-123

5C64x Radix-2 IFFTPurpose Compute the radix-2 inverse FFT of a complex input vector

Library C64x DSP Library—Transforms

Description The C64x Radix-2 IFFT block computes the radix-2 inverse FFT of each
channel of a complex input signal. This block uses a decimation-in-frequency
forward FFT algorithm with butterfly weights modified to compute an inverse
FFT. The input length of each channel must be both a power of two and in the
range 16 to 32,768, inclusive. The input must also be in natural (linear) order.
The output of this block is a complex signal in bit-reversed order. Inputs and
outputs are signed 16-bit fixed-point data types.

The radix2 routine used by this block employs a radix-2 FFT of length L=2^k.
In order to ensure that the gain of the block matches that of the theoretical
IFFT, the Radix-2 IFFT block offsets the location of the binary point of the
output data type by k bits to the left relative to the location of the binary point
of the input data type. That is, the number of fractional bits of the output data
type equals the number of fractional bits of the input data type plus k.

You can use the C64x Bit Reverse block to reorder the output of the Radix-2
IFFT block to natural order.

The Radix-2 IFFT block supports both continuous and discrete sample times.
This block supports little-endian code generation.

Dialog Box

OutputFractionalBits InputFractionalBits k()+=

tic6000.book Page 123 Monday, February 6, 2006 10:39 AM

C64x Radix-2 IFFT

5-124

Algorithm In simulation, the Radix-2 IFFT block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_radix2. During code
generation, this block calls the DSP_radix2 routine to produce optimized code.

See Also C64x Bit Reverse, C64x FFT, C64x Radix-2 FFT

tic6000.book Page 124 Monday, February 6, 2006 10:39 AM

C64x Radix-4 Real FIR

5-125

5C64x Radix-4 Real FIRPurpose Filter a real input signal using a real FIR filter

Library C64x DSP Library—Filtering

Description The C64x Radix-4 Real FIR block filters a real input signal X using a real FIR
filter. This filter is implemented using a direct form structure.

The number of input samples per channel must be a multiple of four. The filter
coefficients are specified by a real vector, H. The number of filter coefficients
must be a multiple of four and must be at least eight. The coefficients must also
be in reversed order {b(n), b(n-1),…,(b(0)}. All inputs, coefficients, and outputs
are Q.15 signals.

The Radix-4 Real FIR block supports discrete sample times and both
little-endian and big-endian code generation.

Dialog Box

Coefficient source
Specify the source of the filter coefficients:

•Specify via dialog—Enter the coefficients in the Coefficients
parameter in the dialog

•Input port—Accept the coefficients from port H. This port must have the
same rate as the input data port X

tic6000.book Page 125 Monday, February 6, 2006 10:39 AM

C64x Radix-4 Real FIR

5-126

Coefficients (H)
Designate the filter coefficients in vector format. This parameter is only
visible when Specify via dialog is selected for the Coefficient source
parameter. Enter the n coefficients in reversed order—b(n), b(n-1),…,(b(0).
This parameter is tunable in simulation.

Initial conditions
If the initial conditions are

•All the same, enter a scalar.

•Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. The length of this vector
must be one less than the number of coefficients.

•Different across channels, enter a matrix containing all initial conditions.
The number of rows of this matrix must be one less than the number of
coefficients, and the number of columns of this matrix must be equal to
the number of channels.

Initial conditions must be real.

Algorithm In simulation, the Radix-4 Real FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fir_r4. During code
generation, this block calls the DSP_fir_r4 routine to produce optimized code.

See Also C64x Complex FIR, C64x General Real FIR, C64x Radix-8 Real FIR,
C64x Symmetric Real FIR

tic6000.book Page 126 Monday, February 6, 2006 10:39 AM

C64x Radix-8 Real FIR

5-127

5C64x Radix-8 Real FIRPurpose Filter a real input signal using a real FIR filter

Library C64x DSP Library—Filtering

Description The C64x Radix-8 Real FIR block filters a real input signal X using a real FIR
filter. This filter is implemented using a direct form structure.

The number of input samples per channel must be a multiple of four. The filter
coefficients are specified by a real vector, H. The number of coefficients must
be an integer multiple of eight. The coefficients must be in reversed order—
{b(n), b(n-1),…,(b(0)}. All inputs, coefficients, and outputs are Q.15 signals.

The Radix-8 Real FIR block supports discrete sample times and little-endian
code generation only.

Dialog Box

Coefficient source
Specify the source of the filter coefficients:

•Specify via dialog—Enter the coefficients in the Coefficients
parameter in the dialog

•Input port—Accept the coefficients from port H. This port must have the
same rate as the input data port X

Coefficients (H)

tic6000.book Page 127 Monday, February 6, 2006 10:39 AM

C64x Radix-8 Real FIR

5-128

Designate the filter coefficients in vector format, entering them in reversed
order—b(n), b(n-1),…,(b(0). This parameter is visible when Specify via
dialog is selected for the Coefficient source parameter. This parameter
is tunable in simulation.

Initial conditions
If the initial conditions are

•All the same, you need only enter a scalar.

•Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. The length of this vector
must be one less than the number of coefficients.

•Different across channels, enter a matrix containing all initial conditions.
The number of rows of this matrix must be one less than the number of
coefficients, and the number of columns of this matrix must be equal to
the number of channels.

Initial conditions must be real.

Algorithm In simulation, the Radix-8 Real FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fir_r8. During code
generation, this block calls the DSP_fir_r8 routine to produce optimized code.

See Also C64x Complex FIR, C64x General Real FIR, C64x Radix-4 Real FIR,
C64x Symmetric Real FIR

tic6000.book Page 128 Monday, February 6, 2006 10:39 AM

C64x Real Forward Lattice All-Pole IIR

5-129

5C64x Real Forward Lattice All-Pole IIRPurpose Filter a real input signal using an autoregressive forward lattice filter

Library C64x DSP Library—Filtering

Description The C64x Real Forward Lattice All-Pole IIR block filters a real input signal
using an autoregressive forward lattice filter. The input and output signals
must be the same 16-bit signed fixed-point data type. The reflection coefficients
must be real and Q.15. The number of reflection coefficients must be greater
than or equal to ten; they must be even; and they must be in reversed order—
k(n), k(n-1),…, k(0). Using an even number of reflection coefficients maximizes
the speed of your generated code.

The Real Forward Lattice All-Pole IIR block supports discrete sample times
and both little-endian and big-endian code generation.

Dialog Box

Coefficient source
Specify the source of the filter coefficients:

•Specify via dialog—Enter the coefficients in the Reflection
coefficients parameter in the dialog

•Input port—Accept the coefficients from port K

tic6000.book Page 129 Monday, February 6, 2006 10:39 AM

C64x Real Forward Lattice All-Pole IIR

5-130

Reflection coefficients
Designate the reflection coefficients of the filter in vector format. The
number of coefficients must be greater than or equal to ten and be even.
Enter the coefficients in reverse order from k(n) to k(0). Using an even
number of reflection coefficients maximizes the speed of your generated
code. This parameter is visible when you select Specify via dialog for the
Coefficient source parameter. This parameter is tunable in simulation.

Initial conditions
If your block initial conditions are

•All the same, you need only enter a scalar.

•Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. The length (number of
elements) of this vector must be the same as the number of reflection
coefficients in your filter.

•Different across channels, enter a matrix containing all initial conditions.
The number of rows (initial conditions for one channel) of this matrix
must be the same as the number of reflection coefficients, and the number
of columns of this matrix must be equal to the number of channels.

Algorithm In simulation, the Real Forward Lattice All-Pole IIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_iirlat. During code
generation, this block calls the DSP_iirlat routine to produce optimized code.

See Also C64x Real IIR

tic6000.book Page 130 Monday, February 6, 2006 10:39 AM

C64x Real IIR

5-131

5C64x Real IIRPurpose Filter a real input signal using a real autoregressive moving-average IIR filter

Library C64x DSP Library—Filtering

Description The C64x Real IIR block filters a real input signal X using a real autoregressive
moving-average (ARMA) IIR Filter. This filter is implemented using a direct
form I structure. You must use at least eight input samples.

There must be five AR coefficients and five MA coefficients. The first AR
coefficient is always assumed to be one. Inputs, coefficients, and output are
Q.15 data types.

The Real IIR block supports discrete sample times and both little-endian and
big-endian code generation.

Dialog Box

tic6000.book Page 131 Monday, February 6, 2006 10:39 AM

C64x Real IIR

5-132

Coefficient sources
Specify the source of the filter coefficients:

•Specify via dialog—Enter the coefficients in the MA (numerator)
coefficients and AR (denominator) coefficients parameters in the
dialog

•Input ports—Accept the coefficients from ports MA and AR

MA (numerator) coefficients
Designate the moving-average coefficients of the filter in vector format.
There must be five MA coefficients. This parameter is only visible when
Specify via dialog is selected for the Coefficient sources parameter.
This parameter is tunable in simulation.

AR (denominator) coefficients
Designate the autoregressive coefficients of the filter in vector format.
There must be five AR coefficients, however the first AR coefficient is
assumed to be equal to one. This parameter is only visible when Specify
via dialog is selected for the Coefficient sources parameter. This
parameter is tunable in simulation.

Input state initial conditions
If the input state initial conditions are

•All the same, you need only enter a scalar.

•Different within channels but the same across channels, enter a vector
containing the input state initial conditions for one channel. The length
of this vector must be four.

•Different across channels, enter a matrix containing all input state initial
conditions. This matrix must have four rows.

Output state initial conditions
If the output state initial conditions are

•All the same, you need only enter a scalar.

•Different within channels but the same across channels, enter a vector
containing the output state initial conditions for one channel. The length
of this vector must be four.

tic6000.book Page 132 Monday, February 6, 2006 10:39 AM

C64x Real IIR

5-133

•Different across channels, enter a matrix containing all output state
initial conditions. This matrix must have four rows.

Algorithm In simulation, the Real IIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_iir. During code
generation, this block calls the DSP_iir routine to produce optimized code.

See Also C64x Real Forward Lattice All-Pole IIR

tic6000.book Page 133 Monday, February 6, 2006 10:39 AM

C64x Reciprocal

5-134

5C64x ReciprocalPurpose Compute the fractional and exponential portions of the reciprocal of a real
input signal

Library C64x DSP Library—Math and Matrices

Description The C64x Reciprocal block computes the fractional (F) and exponential (E)
portions of the reciprocal of a real Q.15 input, such that the reciprocal of the
input is F*(2E). The fraction is Q.15 and the exponent is a 16-bit signed integer.

The Reciprocal block supports both continuous and discrete sample times. This
block also supports both little-endian and big-endian code generation.

Dialog Box

Algorithm In simulation, the Reciprocal block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_recip16. During code
generation, this block calls the DSP_recip16 routine to produce optimized code.

tic6000.book Page 134 Monday, February 6, 2006 10:39 AM

C64x Symmetric Real FIR

5-135

5C64x Symmetric Real FIRPurpose Filter a real input signal using a symmetric real FIR filter

Library C64x DSP Library—Filtering

Description The C64x Symmetric Real FIR block filters a real input signal using a
symmetric real FIR filter. This filter is implemented using a direct form
structure.

The number of input samples per channel must be even. The filter coefficients
are specified by a real vector H, which must be symmetric about its middle
element. Thus you must use an odd number of coefficients. The number of
coefficients must be of the form 16k + 1, where k is a positive integer. This
block wraps overflows that occur. The input, coefficients, and output are 16-bit
signed fixed-point data types.

Intermediate multiplys and accumulates performed by this filter result in
32-bit accumulator values. However, the Symmetric Real FIR block only
outputs 16 bits. You can choose to output 16 bits of the accumulator value in
one of the following ways.

The Symmetric Real FIR block supports discrete sample times and only
little-endian code generation.

Match input x Output 16 bits of the accumulator value such that the output
has the same number of fractional bits as the input

Match coefficients h Output 16 bits of the accumulator value such that the output
has the same number of fractional bits as the coefficients

Match high 16 bits of acc. Output bits 31 - 16 of the accumulator value

Match high 16 bits of prod. Output bits 30 - 15 of the accumulator value

User-defined Output 16 bits of the accumulator value such that the output
has the number of fractional bits specified in the Number of
fractional bits in output parameter

tic6000.book Page 135 Monday, February 6, 2006 10:39 AM

C64x Symmetric Real FIR

5-136

Dialog Box

Coefficient source
Specify the source of the filter coefficients:

•Specify via dialog—Enter the coefficients in the Coefficients
parameter in the dialog

•Input port—Accept the coefficients from port H

tic6000.book Page 136 Monday, February 6, 2006 10:39 AM

C64x Symmetric Real FIR

5-137

Coefficients
Enter the coefficients in vector format. Coefficients must be symmetric
about the middle element of the vector, so the number of coefficients must
be odd. This parameter is visible when Specify via dialog is specified for
the Coefficient source parameter. This parameter is tunable in
simulation.

Set fractional bits in coefficients to
Specify the number of fractional bits in the filter coefficients:

•Match input X—Sets the coefficients to have the same number of
fractional bits as the input

•Best precision—Sets the number of fractional bits of the coefficients
such that the coefficients are represented to the best precision possible

•User-defined—Sets the number of fractional bits in the coefficients with
the Number of fractional bits in coefficients parameter

 This parameter is visible only when Specify via dialog is specified for
the Coefficient source parameter.

Number of fractional bits in coefficients
Specify the number of bits to the right of the binary point in the filter
coefficients. This parameter is visible only when Specify via dialog is
specified for the Coefficient source parameter, and is only enabled if
User-defined is specified for the Set fractional bits in coefficients to
parameter.

Set fractional bits in output to
Only 16 bits of the 32 accumulator bits are output from the block. Select
which 16 bits to output:

•Match input X—Output the 16 bits of the accumulator value that cause
the number of fractional bits in the output to match the number of
fractional bits in input X

•Match coefficients H—Output the 16 bits of the accumulator value
that cause the number of fractional bits in the output to match the
number of fractional bits in coefficients H

•Match high bits of acc. (b31:b16)—Output the highest 16 bits of the
accumulator value

tic6000.book Page 137 Monday, February 6, 2006 10:39 AM

C64x Symmetric Real FIR

5-138

•Match high bits of prod. (b30:b15)—Output the second-highest 16
bits of the accumulator value

•User-defined—Output the 16 bits of the accumulator value that cause
the number of fractional bits of the output to match the value specified in
the Number of fractional bits in output parameter

See Matrix Multiply “Examples” on page 5-119 for demonstrations of these
selections.

Number of fractional bits in output
Specify the number of bits to the right of the binary point in the output.
This parameter is only enabled if User-defined is selected for the Set
fractional bits in output to parameter.

Initial conditions
If the initial conditions are

•All the same, you need only enter a scalar.

•Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. The length of this vector
must be one less than the number of coefficients.

•Different across channels, enter a matrix containing all initial conditions.
The number of rows of this matrix must be one less than the number of
coefficients, and the number of columns of this matrix must be equal to
the number of channels.

Algorithm In simulation, the Symmetric Real FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fir_sym. During code
generation, this block calls the DSP_fir_sym routine to produce optimized code.

See Also C64x Complex FIR, C64x General Real FIR, C64x Radix-4 Real FIR,
C64x Radix-8 Real FIR

tic6000.book Page 138 Monday, February 6, 2006 10:39 AM

C64x Vector Dot Product

5-139

5C64x Vector Dot ProductPurpose Compute the vector dot product of two real input signals

Library C64x DSP Library—Math and Matrices

Description The C64x Vector Dot Product block computes the vector dot product of two real
input vectors, X and Y. The input vectors must have the same dimensions and
must be signed 16-bit fixed-point data types. The number of samples per
channel of the inputs must be a multiple of four. The output is a signed 32-bit
fixed-point scalar on each channel, and the number of fractional bits of the
output is equal to the sum of the number of fractional bits of the inputs.

The Vector Dot Product block supports both continuous and discrete sample
times. This block also supports both little-endian and big-endian code
generation.

Dialog Box

Algorithm In simulation, the Vector Dot Product block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_dotprod. During code
generation, this block calls the DSP_dotprod routine to produce optimized code.

tic6000.book Page 139 Monday, February 6, 2006 10:39 AM

C64x Vector Maximum Index

5-140

5C64x Vector Maximum IndexPurpose Compute the index of the maximum value element in each channel of an input
signal

Library C64x DSP Library—Math and Matrices

Description The C64x Vector Maximum Index block computes the zero-based index of the
maximum value element in each channel (vector) of the input signal. The input
may be any real, 16-bit, signed fixed-point data type. The number of samples
per input channel must be an integer multiple of 16 and at least 48. The output
data type is 32-bit signed integer.

The Vector Maximum Index block supports both continuous and discrete
sample times. This block also supports both little-endian and big-endian code
generation.

Dialog Box

Algorithm In simulation, the Vector Maximum Index block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_maxidx. During code
generation, this block calls the DSP_maxidx routine to produce optimized code.

tic6000.book Page 140 Monday, February 6, 2006 10:39 AM

C64x Vector Maximum Value

5-141

5C64x Vector Maximum ValuePurpose Compute the maximum value for each channel of an input signal

Library C64x DSP Library—Math and Matrices

Description The C64x Vector Maximum Value block returns the maximum value in each
channel (vector) of the input signal. The input can be any real, 16-bit, signed
fixed-point data type. The number of samples on each input channel must be
an integer multiple of 8 and must be at least 32. The output data type matches
the input data type.

The Vector Maximum Value block supports both continuous and discrete
sample times. This block also supports both little-endian and big-endian code
generation.

Dialog Box

Algorithm In simulation, the Vector Maximum Value block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_maxval. During code
generation, this block calls the DSP_maxval routine to produce optimized code.

See Also C64x Vector Minimum Value

tic6000.book Page 141 Monday, February 6, 2006 10:39 AM

C64x Vector Minimum Value

5-142

5C64x Vector Minimum ValuePurpose Compute the minimum value for each channel of an input signal

Library C64x DSP Library—Math and Matrices

Description The C64x Vector Minimum Value block returns the minimum value in each
channel of the input signal. The input may be any real, 16-bit, signed
fixed-point data type. The number of samples on each input channel must be
an integer multiple of 4 and must be at least 20. The output data type matches
the input data type.

The Vector Minimum Value block supports both continuous and discrete
sample times. This block also supports both little-endian and big-endian code
generation.

Dialog Box

Algorithm In simulation, the Vector Minimum Value block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_minval. During code
generation, this block calls the DSP_minval routine to produce optimized code.

See Also C64x Vector Maximum Value

tic6000.book Page 142 Monday, February 6, 2006 10:39 AM

C64x Vector Multiply

5-143

5C64x Vector MultiplyPurpose Perform element-wise multiplication on two inputs

Library C64x DSP Library—Math and Matrices

Description The C64x Vector Multiply block performs element-wise 32-bit multiplication of
two inputs X and Y. The total number of elements in each input must be a
multiple or 8 and at least 16, and the inputs must have matching dimensions.
The upper 32 bits of the 64-bit accumulator result are returned. All input and
output elements are 32-bit signed fixed-point data types.

The Vector Multiply block supports both continuous and discrete sample times.
This block also supports both little-endian and big-endian code generation.

Dialog Box

Algorithm In simulation, the Vector Multiply block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_mul32. During code
generation, this block calls the DSP_mul32 routine to produce optimized code.

See Also C64x Matrix Multiply

tic6000.book Page 143 Monday, February 6, 2006 10:39 AM

C64x Vector Negate

5-144

5C64x Vector NegatePurpose Negate each element of an input signal

Library C64x DSP Library—Math and Matrices

Description The C64x Vector Negate block negates each element of a 32-bit signed
fixed-point input signal. For real signals, the number of input elements must
be a multiple of four, and at least eight. For complex signals, the number of
input elements must be at least two. The output is the same data type as the
input.

The Vector Negate block supports both continuous and discrete sample times.
This block also supports both little-endian and big-endian code generation.

Dialog Box

Algorithm In simulation, the Vector Negate block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_neg32. During code
generation, this block calls the DSP_neg32 routine to produce optimized code.

tic6000.book Page 144 Monday, February 6, 2006 10:39 AM

C64x Vector Sum of Squares

5-145

5C64x Vector Sum of SquaresPurpose Compute the sum of squares over each channel of a real input

Library C64x DSP Library—Math and Matrices

Description The C64x Vector Sum of Squares block computes the sum of squares over each
channel of a real input. The number of samples per input channel must be
divisible by 4; equal to or greater than 8; and the input must be a 16-bit signed
fixed-point data type. The output is a 32-bit signed fixed-point scalar on each
channel. The number of fractional bits of the output is twice the number of
fractional bits of the input.

The Vector Sum of Squares block supports both continuous and discrete sample
times. This block also supports both little-endian and big-endian code
generation.

Dialog Box

Algorithm In simulation, the Vector Sum of Squares block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_vecsumsq. During code
generation, this block calls the DSP_vecsumsq routine to produce optimized
code.

tic6000.book Page 145 Monday, February 6, 2006 10:39 AM

C64x Weighted Vector Sum

5-146

5C64x Weighted Vector SumPurpose Find the weighted sum of two input vectors

Library C64x DSP Library—Math and Matrices

Description The C64x Weighted Vector Sum block computes the weighted sum of two
inputs, X and Y, according to (W*X)+Y. Inputs may be vectors or frame-based
matrices. The number of samples per channel must be a multiple of eight.
Inputs, weights, and output are Q.15 data types, and weights must be in the
range -1 < W < 1.

The Weighted Vector Sum block supports both continuous and discrete sample
times. This block also supports both little-endian and big-endian code
generation.

Dialog Box

Weight source
Specify the source of the weights:

•Specify via dialog—Enter the weights in the Weights (W) parameter
in the dialog

•Input port—Accept the weights from port W

tic6000.book Page 146 Monday, February 6, 2006 10:39 AM

C64x Weighted Vector Sum

5-147

Weights (W)
This parameter is visible only when Specify via dialog is specified for
the Weight source parameter. This parameter is tunable in simulation.
When the weights are

•All the same, you need only enter a scalar.

•Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. The length of this
vector must be a multiple of four.

•Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be a multiple of four,
and the number of columns of this matrix must be equal to the number
of channels.

Weights must be in the range -1 < W < 1.

Algorithm In simulation, the Weighted Vector Sum block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_w_vec. During code
generation, this block calls the DSP_w_vec routine to produce optimized code.

tic6000.book Page 147 Monday, February 6, 2006 10:39 AM

C6701EVM

5-148

5C6701EVMPurpose Set target preferences and memory map to generate code for the C6701
Evaluation Module

Library Target Preferences in Embedded Target for TI C6000 DSP for TI DSP

Description Options on the block mask let you set features of code generation for your
C6701 Evaluation Module target. Adding this block to your Simulink model
provides access to the processor hardware settings you need to configure when
you generate code from Real-Time Workshop to run on the target.

Any model that you target to the C6701 evaluation module must include this
block, or the Custom C6000 target preferences block. Real-Time Workshop
returns an error message if a target preferences block is not present in your
model.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to set the
target preferences for the model.

Among the processor and target options you specify here are the target board
information, memory mapping and layout, and how to allocate the various code
sections, such as compiler, DSP/BIOS, and custom sections.

Setting the options included in this dialog results in identifying your target to
Real-Time Workshop, Embedded Target for TI C6000 DSP, and Simulink, and
configuring the memory map for your target. Both are essential steps in the
process of targeting any board, custom or explicitly supported like the C6711
DSK or the DM642 EVM.

Unlike most other blocks, you cannot open the block dialog for this block unless
you add the block to a model. When you try to open the block dialog, the block
attempts to connect to your target. It cannot make the connection when the
block is in the library and returns an error message.

tic6000.book Page 148 Monday, February 6, 2006 10:39 AM

C6701EVM

5-149

Generating Code from Model Subsystems
Real-Time Workshop provides the ability to generate code from a selected
subsystem in a model. To generate code for the C6701 EVM from a subsystem,
the subsystem model must include a C6701EVM target preferences block.

Dialog Box

All target preferences block dialogs provide tabbed access to panes that include
options you set for the target processor and target board:

• Board info—select the target board and processor, set the clock speed, and
identify the target.

tic6000.book Page 149 Monday, February 6, 2006 10:39 AM

C6701EVM

5-150

• Memory—set the memory allocation and layout on the target processor
(memory mapping).

• Sections—determine the arrangement and location of the sections on the
target processor such as where to put the DSP/BIOS information and where
to put compiler information.

Board Info Pane
The following options appear on the Board Info pane for the C6000 Target
Preferences dialog.

Board Type
Lets you enter the type of board you are targeting with the model. You can
enter Custom to support any board based on one of the supported processors, or
enter the name of one of the supported boards, such as C6711DSK. This block
specifies the C6701EVM by default.

Device
Lets you select the type of processor on the board you select in CCS board
name. The processor type you enter determines the contents and setting for
options on the Memory and Sections panes in this dialog. If you are targeting
one of the supported boards, Device is disabled and the selected device is fixed.

CPU Clock Speed (MHz)
Shows the clock speed of the processor on your target. When you enter a value,
you are not changing the CPU clock rate, you are reporting the actual rate. If
the value you enter does not match the rate on the target, your model real-time
results may be wrong, and code profiling results will not be correct.

You must enter the actual clock rate the board uses. The rate you enter here
does not change the rate on the board. Setting CPU clock speed to the actual
board rate allows the code you generate to run correctly according to the actual
clock rate of the hardware.

When you generate code for C6000 targets from Simulink models, you may
encounter the software timer. If your model does not include ADC or DAC
blocks, or when the processing rates in your model change (the model is
multirate), you automatically invoke the timer to handle and create interrupts
to drive your model.

Correctly generating interrupts for your model depends on the clock rate of the
CPU on your target. While the default clock rate is 100 MHz on the C6701

tic6000.book Page 150 Monday, February 6, 2006 10:39 AM

C6701EVM

5-151

EVM, you can change the rate with the DIP switches on the board or from one
of the software utilities provided by TI. C6711 DSK hardware uses a fixed clock
rate of 150 MHz; you cannot change the clock rate. Other C6000 processors
allow different clock speeds.

For the timer software to calculate the interrupts correctly, Embedded Target
for TI C6000 DSP needs to know the actual clock rate of your target processor
as you configured it. CPU clock speed lets you tell the timer the rate at which
your target CPU runs. You are telling the software timer what rate to use to
match the CPU rate.

The timer uses the CPU clock rate you specify in CPU clock speed to calculate
the time for each interrupt. For example, if your model includes a sine wave
generator block running at 1 KHz feeding a signal into an FIR filter block, the
timer needs to create interrupts to generate the sine wave samples at the
proper rate. Using the clock rate you choose, 100 MHz for example, the timer
calculates the sine generator interrupt period as follows for the sine block:

• Sine block rate = 1 KHz, or 0.001 s/sample

• CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires

• 100000000/1000 = 1 Sine block interrupt per 1000000 clock ticks

So you must report the correct clock rate or the interrupts come at the wrong
times and the results are incorrect.

Simulator
Select this option when you are targeting a simulator rather than a hardware
target. You must select Simulator to target your code to a C6000 simulator.

Enable High-Speed RTDX
Select this option to tell the code generation process to enable high-speed
RTDX for this model.

CCS Board Name
Contains a list of all the boards defined in CCS Setup. From the list of available
boards, select the one that you are targeting your code for.

CCS Processor Name
Lists the processors on the board you selected for targeting in CCS board
name. In most cases, only one name appears because the board has one

tic6000.book Page 151 Monday, February 6, 2006 10:39 AM

C6701EVM

5-152

processor. In the multiprocessor case, you select the processor by name from
the list.

Memory Pane
When you target any board, you need to specify the layout of the physical
memory on your processor and board to determine how use it for your program.
For supported boards, the board-specific target preferences blocks set the
default memory map.

The Memory pane contains memory options in three areas:

tic6000.book Page 152 Monday, February 6, 2006 10:39 AM

C6701EVM

5-153

• Physical Memory—specifies the processor and board memory map

• Heap—specifies whether you use a heap and determines the size in words

• L2 Cache—enables the L2 cache (where available) and sets the size in kB

Be aware that these options may affect the options on the Sections pane. You
can make selections here that change how you configure options on the
Sections pane.

Most of the information about memory segments and memory allocation is
available from the online help system for Code Composer Studio.

Physical Memory Options
This list shows the physical memory segments avaliable on the board and
processor. By default, target preferences blocks show the memory segments
found on the selected processor. In addition, the Memory pane on
preconfigured target preferences blocks shows the memory segments available
on the board, but off of the processor. Target preferences blocks set default
starting addresses, lengths, and contents of the default memory segments.

The default memory segments for C6701 EVM boards are:

• IPRAM

• IDRAM

• SBSRAM

• SDDRAM0

• SDRAM1

Name
When you highlight an entry on the Physical memory list, the name of the
entry appears here. To change the name of the existing memory sgment, select
it in the Physical memory list and then type the new name here.

Note You cannot change the names of default processor memory segments.

To add a new physical memory segment to the list, click Add, replace the
temporary label in Name with the one to use, and press Return. Your new
segment appears on the list.

tic6000.book Page 153 Monday, February 6, 2006 10:39 AM

C6701EVM

5-154

After you add the segment, you can configure the starting address, length, and
contents for the new segment. New segments start with code and data as the
type of content that can be stored in the segment (refer to the Contents option).

Names are case sensitive. NewSegment is not the same as newsegment or
newSegment.

Address
Address reports the starting address for the memory segment showing in
Name. Address entries are in hexadecimal format and limited only by the
board or processor memory.

When you are using a processor-specific preferences block, the starting address
shown is the default value. You can change the starting value by entering the
new value directly in Address when you select the memory segment to change.

Length
From the starting address, Length sets the length of the memory allocated to
the segment in Name. As in all memory entries, specify the length in
hexadecimal format, in minimum addressable data units (MADUs). For the
C6000 processor family, the MADU is 8 bytes, one word.

When you are using a processor-specific preferences block, the length shown is
the default value. You can change the value by entering the new value directly
in this option.

Contents
Contents details the kind of program sections that you can store in the memory
segment in Name. As the processor type for the target preferences block
changes, the kinds of information you store in listed memory segments may
change. Generally, the Contents list contains these strings:

• Code—allow code to be stored in the memory segment in Name.

• Data—allow data to be stored in the memory segment in Name.

• Code and Data—allow code and data to be stored in the memory segment in
Name. When you add a new memory segment, this is the default setting for
the contents of the new element.

You may add or use as many segments of each type as you need, within the
limits of the memory on your processor.

tic6000.book Page 154 Monday, February 6, 2006 10:39 AM

C6701EVM

5-155

Add
Click Add to add a new memory segment to the target memory map. When you
click Add, a new segment name appears, for example NEWMEM1, in Name and on
the Physical memory list. In Name, change the temporary name NEWMEM1 by
entering the new segment name. Entering the new name, or clicking Apply
updates the temporary name on the list to the name you enter.

Remove
This option lets you remove a memory segment from the memory map. Select
the segment to remove on the Physical memory list and click Remove to
delete the segment.

Create Heap
Selecting this option enables creating the heap, and enables the Heap size
option.

Using this option you can create a heap in any memory segment on the
Physical memory list. Select the memory segment on the list and then select
Create heap to create a heap in the select segment. After you create the heap,
use the Heap size and Define label options to configure the heap.

The location of the heap in the memory segment is not under your control. The
only way to control the location of the heap in a segment is to make the segment
and the heap the same size. Otherwise, the compiler determines the location of
the heap in the segment.

Heap Size
After you select Create heap, this option lets you specify the size of the heap
in words. Enter the number of words in decimal format. When you enter the
heap size in decimal words, the system converts the decimal value to
hexadecimal format. You can enter the value directly in hexadecimal format as
well. Processors may support different maximum heap sizes.

Define Label
Selecting Create heap enables this option that allows you to name the heap.
Enter your label for the heap in the Heap label option.

Heap Label
Enabled by selecting Define label, you use this option to provide the label for
the heap. Any combination of characters is accepted for the label, except
reserved characters in C/C++ compilers.

tic6000.book Page 155 Monday, February 6, 2006 10:39 AM

C6701EVM

5-156

Enable L2 Cache
C621x, C671x, and C641x processors support an L2 cache memory structure
that you can configure as SRAM and partial cache. Both the data memory and
the program share this second-level memory. C620x DSPs do not support L2
cache memory and this option is not available when you choose one of the
C620x processors as your target.

If your processor supports the two-level memory scheme, this option enables
the L2 cache on the processor.

L2 Cache size
Once you enable the L2 cache, use this list to determine the size of the cache
allotted. Select the size of the cache from the list.

Sections Pane
Options on this pane let you specify where various program sections should go
in memory. Program sections are distinct from memory segments—sections
are portions of the executable code stored in contiguous memory locations.
Among the sections used generally are .text, .bss, .data, and .stack. Some
sections relate to the compiler, some to DSP/BIOS, and some can be custom
sections as you require.

For more information about program sections and objects, refer to the CCS
online help. Most of the definitions and descriptions in this section come from
CCS.

tic6000.book Page 156 Monday, February 6, 2006 10:39 AM

C6701EVM

5-157

Within this pane, you configure the allocation of sections for Compiler,
DSP/BIOS, and Custom needs.

tic6000.book Page 157 Monday, February 6, 2006 10:39 AM

C6701EVM

5-158

Here are brief definitions of the various kinds of sections in the lists. All
sections do not appear on both lists. The list on which the string appears is
shown in the table.

String Section List Description of the Section Contents

.args DSP/BIOS Argument buffers

.bss Compiler Static and global C variables in the code

.bios DSP/BIOS DSP/BIOS code if you are using DSP/BIOS
options in your program

.cinit Compiler Tables for initializing global and static
variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier and
string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global, defined as
far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS startup
initialization tables section

.hwi DSP/BIOS Dispatch code for interrupt service routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the target
program can read

.pinit Compiler Load allocation of the table of global object
constructors section.

.rtdx_text DSP/BIOS Code sections for the RTDX program
modules

.stack Compiler The global stack

tic6000.book Page 158 Monday, February 6, 2006 10:39 AM

C6701EVM

5-159

You can learn more about memory sections and objects in your Code Composer
Studio online help. Most of the definitions and descriptions in this section come
from the online help for CCS.

Compiler Sections
During program compilation, the C6000 compiler produces both uninitialized
and initialized blocks of data and code. These blocks get allocated into memory
as required by the configuration of your system. On the Compiler sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections. The initialized
sections are:

• .cinit
• .const
• .switch

• .text—created by the assembler.

These sections are uninitialized:

• .bss—created by the assembler.
• .far
• .stack

.switch Compiler Jump tables for switch statements in the
executable code

.sysdata DSP/BIOS Data about DSP/BIOS

.sysinit DSP/BIOS DSP/BIOS initialization startup code

.sysmem Compiler Dynamically allocated object in the code
containing the heap

.text Compiler Load allocation for the literal strings,
executable code, and compiler generated
constants

.trcdata DSP/BIOS TRC mask variable and its initial value
section load allocation

String Section List Description of the Section Contents

tic6000.book Page 159 Monday, February 6, 2006 10:39 AM

C6701EVM

5-160

• .sysmem

Other sections appear on the list as well:

• .data—created by the assembler. The C/C++ compiler does not use this
section.

• .cio
• .pinit

When you highlight a section on the list, Description shows a brief description
of the section. Also, Placement shows you where the section is presently
allocated in memory.

Description
Provides a brief explanation of the contents of the selected entry on the
Compiler sections list.

Placement
Shows you where the selected Compiler sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments available on
the C6701 EVM:

• IPRAM

• IDRAM

• SBSRAM

• SDDRAM0

• SDRAM1

DSP/BIOS Sections
During program compilation, DSP/BIOS produces both uninitialized and
initialized blocks of data and code. These blocks get allocated into memory as
required by the configuration of your system. On the DSP/BIOS sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections.

Description
Provides a brief explanation of the contents of the selected DSP/BIOS sections
list entry

tic6000.book Page 160 Monday, February 6, 2006 10:39 AM

C6701EVM

5-161

Placement
Shows where the selected DSP/BIOS sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments available on
C6000 processors, and changes based on the processor you are using.

DSP/BIOS Object Placement
Distinct from the entries on the DSP/BIOS sections list, DSP/BIOS objects like
STS or LOG, if your project uses them, get placed in the memory segment you
select from the DSP/BIOS Object Placement list. All DSP/BIOS objects use
the same memory segment. You cannot select the location for individual
objects.

Custom Sections
When your program uses code or data sections that are not included in either
the Compiler sections or DSP/BIOS sections lists, you add the new sections
to this list. Initially, the Custom sections list contains no fixed entries, just a
placeholder for a section for you to define.

Name
You enter the name for your new section here. To add a new section, click Add.
Then replace the temporary name with the name to use. Although the
temporary name includes a period at the beginning you do not need to include
the period in your new name. Names are case sensitive. NewSection is not the
same as newsection, or newSection.

Placement
With your new section added to the Name list, select the memory segment to
which to add your new section. Within the restrictions imposed by the
hardware and compiler, you can select any segment that appears on the list.

Add
Clicking Add lets you configure a new entry to the list of custom sections. When
you click Add, the block provides a new temporary name in Name. Enter the
new section name to add the section to the Custom sections list. After typing
the new name, click Apply to add the new section to the list. Or click OK to add
the section to the list and close the dialog.

Remove
To remove a section from the Custom sections list, select the section to remove
and click Remove. The selected section disappears from the list.

tic6000.book Page 161 Monday, February 6, 2006 10:39 AM

C6701EVM

5-162

DSP/BIOS Pane
Options on this pane let you specify how to configure tasking features of
DSP/BIOS.

This pane provides options the asynchronous task scheduler uses when you
select the Incorporate DSP/BIOS option in the configuration set for your
model. By default, Incorporate DSP/BIOS is selected and the Embedded
Target for TI C6000 DSP creates separate DSP/BIOS tasks for each sample
time in your Simulink model.

DSP/BIOS tasking blocks provide parameters on their block dialogs so you can
specify the DSP/BIOS stack size and stack segment (where the stack is in
memory) for asynchronous tasks created by the DSP/BIOS Task and Triggered
Task blocks.

The code generation process uses the options on this pane to configure TSK
entries in the TSK Task Manager in CCS when it creates DSP/BIOS tasks.

When you choose not to use DSP/BIOS in your project, by clearing the
Incorporate DSP/BIOS the configuration set for your model, you disable the
options in this pane and Embedded Target for TI C6000 DSP uses an
interrupt-based scheduler. It does not create or use DSP/BIOS tasks.

For more information about tasks, refer to the Code Composer Studio online
help. Most of the definitions and descriptions in this section come from CCS.

tic6000.book Page 162 Monday, February 6, 2006 10:39 AM

C6701EVM

5-163

Within this pane, you configure the options for DSP/BIOS tasks, such as the
task manager and scheduler configuration. Note that the Sections pane
includes DSP/BIOS configuration options as well. The options specify the stack
use and locations on the stack for static and dynamic tasks.

Default stack size (bytes)
DSP/BIOS uses a stack to save and restore variables and CPU context
during thread preemption for task threads. This option sets the size of the

tic6000.book Page 163 Monday, February 6, 2006 10:39 AM

C6701EVM

5-164

DSP/BIOS stack in bytes allocated for each task. 4096 bytes is the default
value. You can set any size up to the limits for the processor. Set the stack
size so that tasks do not use more memory than you allocate. While any
task can use more memory than the stack includes, this might cause the
task to write into other memory or data areas, possibly causing
unpredictable behavior.

Stack segment for static tasks
Use this option to specify where to allocate the stack for static tasks. Static
tasks are created whether or not they are needed for operation, compared
to dynamic tasks that the system creates as needed. Tasks that your
program uses often might be good candidates for static tasks. Infrequently
used tasks usually work best as dynamic tasks.

The list offers options SDRAM and ISRAM for locating the stack in memory,
with SDRAM as the default section. The Memory pane provide more options
for the physical memory on the processor.

Stack segment for dynamic tasks
Like static tasks, dynamic tasks use a stack as well. Setting this option
specifies where to locate the stack for dynamic tasks. In this case, only
MEM_NULL is allowed for the stack location in memory.

See Also Custom C6000

tic6000.book Page 164 Monday, February 6, 2006 10:39 AM

C6701 EVM ADC

5-165

5C6701 EVM ADCPurpose Configure digitized signal output from the codec to the processor

Library C6701 EVM Board Support in Embedded Target for TI C6000 DSP for TI DSP

Description Use the C6701 EVM ADC (analog-to-digital converter) block to capture and
digitize analog signals from external sources, such as signal generators,
frequency generators or audio devices. Placing an C6701 EVM ADC block in
your Simulink block diagram lets you use the multimedia audio coder-decoder
module (codec) on the C6701 EVM to convert an analog input signal to a digital
signal for the digital signal processor.

Most of the configuration options in the block affect the codec. However, the
Output data type, Samples per frame and Scaling options are related to the
model you are using in Simulink, the signal processor on the board, or direct
memory access (DMA) on the board. In the following table, you find each option
listed with the C6701 EVM hardware affected.

You can select one of three input sources from the ADC source list:

• Line In—the codec accepts input from the line in connector (LINE IN) on the
board’s mounting bracket.

Option Affected Hardware

ADC Source Codec

Codec Data format Codec

Mic Codec

Output data type TMS320C6701 digital signal processor

Sample rate (Hz) Codec

Samples per frame Direct memory access functions

Scaling TMS320C6701 digital signal processor

Source gain (dB) Codec

Stereo Codec

tic6000.book Page 165 Monday, February 6, 2006 10:39 AM

C6701 EVM ADC

5-166

• Mic—the codec accepts input from the microphone connector (MIC IN) on
the board mounting bracket.

• Loopback—routes the analog signal from the codec output back to the codec
input. Can be useful in some feedback applications.

Use the Stereo check box to indicate whether the audio input is monaural or
stereo. Clear the check box to choose monaural audio input. Select the check
box to enable stereo audio input. Monaural (mono) input is left channel only,
but the output sends left channel content to both the left and right output
channels; stereo uses the left and right channels. Audio Word Byte Order for
Mono and Stereo Inputs shows how the codec stores monaural and stereo
digitized signals in 32-bit words on the C6701 EVM. In the table, L means left
channel, R means right channel, and O means that the 4-byte nibble does not
contain data.

When you select Mic for ADC source, you can select the +20 dB Mic gain boost
check box to add 20 dB to the microphone input signal before the codec digitizes
the signal.

Selecting Loopback for ADC source configures the C6701 EVM to capture the
output from the codec as the input to the C6701 EVM ADC. When you select
Loopback, your model must include both the C6701 EVM ADC and C6701 EVM
DAC blocks.

Audio Word Byte Order for Mono and Stereo Inputs

Format Left and Mono Channel
(first 16 bits of data word)

Right and Stereo Channel
(last 16 bits of data word)

16-bit mono 0xLLLL 0x0000

16-bit stereo 0xLLLL 0xRRRR

8-bit mono 0xLL00 0x0000

8-bit stereo 0xLL00 0xRR00

4-bit mono 0xL000 0x0000

4-bit stereo 0xL000 0xR000

tic6000.book Page 166 Monday, February 6, 2006 10:39 AM

C6701 EVM ADC

5-167

You must set the sample rate for the block. From Sample rate (Hz), select the
sample rate for your model. Sample rate (Hz) specifies the number of times
each second that the codec samples the input signal. Sample rates range from
5500 Hz to 48000 Hz, in preset rates. You must select from the list; you cannot
enter a sample rate that is not on the list.

Source gain (dB) lets you add gain to the input signal before the A/D
conversion. When you select Loopback as the ADC source, your specified
source gain is not added to the input signal. Select the appropriate gain from
the list.

To enable the block and codec to generate data that your Simulink model can
use, select the digitized data format. Three parameters—Codec data format,
Codec data type and Scaling—control the format and range of the digital data
generated by the block. Entries in Table define the output ranges based on
your selections for the Data type, Scaling, and Codec data format parameters
in the Block Parameters dialog.

For example, when you select 16-bit linear data format, normalized scaling,
and the Double data type, the C6701 EVM ADC block outputs a digitized signal
composed of 16 bit samples ranging linearly from -1.0 to about 1.0.

Data Type and Codec Data Format Parameters Choices Determine the Range

Data Type Parameter

Integer Single- or Double
Precision,
Normalized

Single- or Double
Precision,
Floating-Point Integer

C
o
d
ec

 D
a
ta

 F
o
rm

a
t 8-bit Unsigned 0-255 -1.0 to 1.0 0.0 to 255.0

16-bit Linear -32768 to 32767 -1.0 to 1.0 -32768.0 to 32767.0

A-law Unsigned 8-bit (0-255) -1.0 to 1.0 0.0 to 255.0

μ-law Unsigned 8-bit (0-255) -1.0 to 1.0 0.0 to 255.0

ADPCM Unsigned 8-bit (0-255) N/A 0.0 to 255.0

tic6000.book Page 167 Monday, February 6, 2006 10:39 AM

C6701 EVM ADC

5-168

Tables 4-2 and 4-3 list the five codec data formats you can select for the block.
For reference purposes, the data types are described briefly in the following
list:

• 8-bit unsigned—linear encoding that uses 8-bit words and constant steps
between adjacent quantization levels. Compare to A-law or ADPCM
encoding.

• 16-Bit Linear—linear encoding that uses 16-bit words and constant steps
between adjacent quantization levels. Compare to A-law or ADPCM
encoding.

• A-law—a variation on the basic pulse code modulation (PCM) encoding
method. The quantization levels are distributed according to the logarithmic
A-law. It has linear characteristics near zero and logarithmic character for
higher amplitudes. Used in Europe as the telephony standard.

• μ-law—the American/Japanese equivalent of the European standard A-law
encoding. For details, refer to the Consultative Committee for International
Telegraphy and Telephony (CCITT) G.711 specification.

• IMA ADPCM—a modified differential pulse code modulation (PCM)
encoding scheme. The step size for the difference quantization is adapted to
the momentary rate of change of the input signal. For details, refer to the
specification from the Interactive Multimedia Association (IMA) for their
ADPCM implementation.

tic6000.book Page 168 Monday, February 6, 2006 10:39 AM

C6701 EVM ADC

5-169

Dialog Box

ADC source
The input source to the codec. Line In is the default.

Stereo
The number of channels input to the A/D converter. Clearing this option
selects the left channel; selecting this option selects both left and right
input channels. To configure the C6701 EVM board for monaural
operation, clear the Stereo check box. When you first open the dialog,
Stereo is cleared. The default is monaural operation.

+20 dB Mic gain boost
Boosts the input signal by +20dB when ADC source is Mic. Gain is applied
before analog-to-digital conversion.

tic6000.book Page 169 Monday, February 6, 2006 10:39 AM

C6701 EVM ADC

5-170

Sampling rate (Hz)
Sampling rate of the A/D converter. Available sample rates are set by the
two clocks in the codec. Default rate is 8000 Hz.

Codec data format
Configures the format for output from the codec. Used in combination with
the Scaling and Data type parameters to define the digital data leaving
the block.

Your C6701 EVM ADC block format must match the codec data format for
the C6701 EVM DAC block, if you use one in your model. The default
setting is 16-bit linear.

Output data type
Selects the word length and shape of the data from the codec. By default,
double is selected.

Scaling
Selects whether the codec data is unmodified, or normalized to the output
range to ±1.0, based on the codec data format. Normalize is the default
setting.

Source gain (dB)
Specifies the amount to boost the input before conversion. Applied to input
signal when ADC source is Line In or Mic In.

Samples per frame
Creates frame-based outputs from sample-based inputs. This parameter
specifies the number of samples of the signal buffered internally by the
block before it sends the digitized signals, as a frame vector, to the next
block in the model. 64 samples per frame is the default setting. Notice that
the frame rate depends on the sample rate and frame size. For example, if
your input is 32 samples per second, and you select 64 samples per frame,
the frame rate is one frame every two seconds. The throughput remains the
same at 32 samples per second.

Inherit sample time
Selects whether the block inherits the sample time from the model base
rate/Simulink base rate as determined in the Solver options in
Configuration Parameters. Selecting Inherit sample time directs the
block to use the specified rate in model configuration. You must select this

tic6000.book Page 170 Monday, February 6, 2006 10:39 AM

C6701 EVM ADC

5-171

option to use the block in a function subsystem with the asynchronous
scheduler.

See Also C6701 EVM DAC

tic6000.book Page 171 Monday, February 6, 2006 10:39 AM

C6701 EVM DAC

5-172

5C6701 EVM DACPurpose Use and configure the codec to convert digital input to analog output

Library C6701 EVM Board Support in Embedded Target for TI C6000 DSP

Description Adding the C6701 EVM DAC (digital-to-analog converter) block to your
Simulink model provides the means to output an analog signal to the LINE
OUT connection on the C6701 EVM mounting bracket. When you add the
C6701 EVM DAC block, the digital signal received by the codec is converted to
an analog signal. After converting the digital signal to analog form
(digital-to-analog (D/A) conversion), the codec sends the signal to the output
audio jack.

Two of the configuration options in the block affect the codec. The remaining
options relate to the model you are using in Simulink and the signal processor
on the board. In the following table, you find each option listed with the C6701
EVM hardware affected.

To attenuate the output signal after the D/A conversion, select an attenuation
from the DAC attenuation list. Available attenuation values range from 0.0 to
94.5 dB in 1.5 dB increments. You must select from the list; you cannot enter a
value for the attenuation.

For the block to accept data from your Simulink model, you must configure the
data format. The parameters Codec data format and Scaling inform the block
of the format of the digital data being received. Entries in Expected Data Range
for Data Type and Codec Data Format Parameter Combinations, define the
D/A input format based on the data type inherited from the preceding block and

Option Affected Hardware

Codec data format Codec

DAC attenuation Codec

Overflow mode TMS320C6701 Digital Signal Processor

Scaling TMS320C6701 Digital Signal Processor

tic6000.book Page 172 Monday, February 6, 2006 10:39 AM

C6701 EVM DAC

5-173

your selection for the Codec data format parameter in the Block Parameters
dialog box.

For example, when you select 16-bit linear codec data format, with
normalized scaling, and the block inherits the Double data type, the C6701
EVM DAC block expects to receive a digitized signal with each sample 16 bits
long and ranging from -1.0 to 1.0. Signals that do not meet these criteria result
in an error.

Tables 4-4 and 4-5 list the codec data formats you can select for the block. The
following list provides brief descriptions of the available data formats:

• 8-bit unsigned—linear encoding using 8-bit words and constant steps
between adjacent quantization levels. Compare to A-law or ADPCM
encoding.

• 16-Bit Linear—linear encoding using 16-bit words and constant steps
between adjacent quantization levels. Compare to A-law or ADPCM
encoding.

• A-law—a variation on the basic pulse code modulation (PCM) encoding
method. The quantization levels are distributed according to the logarithmic
A-law. It has linear characteristics near zero and logarithmic character for
higher amplitudes. Used in Europe as the telephony standard.

Expected Data Range for Data Type and Codec Data Format Parameter Combinations

Inherited Data Type Parameter

Integer Single- or Double-
Precision,
Normalized

Single- or Double-
Precision,
floating-point Integer

C
o
d
ec

 D
a
ta

 F
o
rm

a
t 8-bit Unsigned 0-255 -1.0 to 1.0 0.0 to 255.0

16-bit Linear -32768 to 32767 -1.0 to 1.0 -32768.0 to 32767.0

A-law Unsigned 8-bit (0-255) -1.0 to 1.0 0.0 to 255.0

μ-law Unsigned 8-bit (0-255) -1.0 to 1.0 0.0 to 255.0

ADPCM Unsigned 8-bit (0-255) N/A 0.0 to 255.0

tic6000.book Page 173 Monday, February 6, 2006 10:39 AM

C6701 EVM DAC

5-174

• μ-law—the American/Japanese equivalent of the European standard A-law
encoding. For details, refer to the Consultative Committee for International
Telegraph and Telephony (CCITT) G.711 specification.

• IMA ADPCM—a modified differential pulse code modulation (PCM)
encoding scheme. The step size for the difference quantization is adapted to
the momentary rate of change of the input signal. For details, refer to the
specification from the Interactive Multimedia Association (IMA) for their
ADPCM implementation.

While converting the digital signal to an analog signal, the codec rounds
floating point data to the nearest integer, thus rounding 0.51 up to 1.0 or 4.49
down to 4.0. In addition, data that exceeds the range for a selected codec data
format and data type is clipped or wrapped depending on the Overflow mode
setting. Clipping is equivalent to saturating. To choose how the board handles
data that falls outside the range that can be represented by the chosen data
format, select an appropriate setting from Overflow mode. Saturate is the
default setting. Selecting Saturate instructs the codec to clip output values to
the maximum or minimum allowed value when output data exceeds the range
of the data format. When you select Wrapping, the codec takes data that
exceeds the acceptable output range and wraps the data back into the
acceptable range using modular arithmetic relative to the smallest
representable number. Selecting wrapping for the Overflow Mode can increase
the performance of your application, but risks generating output values that
exceed the codec data format limits and are wrapped back into the range of
acceptable values.

tic6000.book Page 174 Monday, February 6, 2006 10:39 AM

C6701 EVM DAC

5-175

Dialog Box

Codec data format
Tells the codec the format of data coming into it. Used in combination with
the Scaling and Data type parameters to define the digital data entering
the block. The block converts the input digital signal to an analog output
signal based on how it interprets the input data stream. Codec data
format tells the block how to interpret the input values.

The C6701 EVM DAC block Codec data format must match the Codec
data format for the C6701 EVM ADC block in your model, if any.

Sampling rate (Hz)
Sampling rate of the D/A converter. Available sample rates are set by the
two clocks in the codec. Default rate is 8000 Hz. Choose the appropriate
rate from the list.

Scaling
Selects whether the input to the codec represents unmodified data, or data
that has been normalized to the range ±1.0. Matching the setting for the
C6701 EVM ADC block is usually appropriate here.

tic6000.book Page 175 Monday, February 6, 2006 10:39 AM

C6701 EVM DAC

5-176

DAC attenuation
Specifies the amount to attenuate the block output after D/A conversion.

Overflow mode
Determines how the codec responds to data that is outside the range
specified by the Codec data format and Scaling parameters.

See Also C6701 EVM ADC

tic6000.book Page 176 Monday, February 6, 2006 10:39 AM

C6701 EVM DIP Switch

5-177

5C6701 EVM DIP SwitchPurpose Simulate or read the user-defined DIP switches on the C6701 EVM

Library C6701 EVM Board Support in Embedded Target for TI C6000 DSP

Description Added to your model, this block behaves differently in simulation than in code
generation and targeting.

In simulation—the options USER0, USER1, and USER2 generate output to
simulate the settings of the user-defined dual inline pin (DIP) switches on your
C6701 EVM. Each option turns the associated DIP switch on when you select
it. The switches are independent of one another.

By defining the switches to represent actions on your target, DIP switches let
you modify the operation of your simulated process by reconfiguring the switch
settings.

Use the Data type to specify whether the DIP switch options output an integer
or a logical string of bits to represent the status of the switches. The table that
follows presents all the option setting combinations with the result of your
Data type selection.

Option Settings to Simulate the User DIP Switches on the C6701 EVM

USER0 (LSB) USER1 USER2 (MSB) Boolean
Output

Integer
Output

Cleared Cleared Cleared 000 0

Selected Cleared Cleared 001 1

Cleared Selected Cleared 010 2

Selected Selected Cleared 011 3

Cleared Cleared Selected 100 4

Selected Cleared Selected 101 5

Cleared Selected Selected 110 6

Selected Selected Selected 111 7

tic6000.book Page 177 Monday, February 6, 2006 10:39 AM

C6701 EVM DIP Switch

5-178

Selecting the Integer data type results in the switch settings generating an
integer in the range from 0 to 7 (uint8), corresponding to converting the string
of individual switch settings to a decimal value. In the Boolean data type, the
output string presents the separate switch setting for each switch, with the
status of USER0 represented by the least significant bit (LSB) and the USER2
status represented by the most significant bit (MSB).

In code generation and targeting—the code generated by the block reads the
physical switch settings of the user switches on the board and reports them as
shown in Table . Your process uses the result in the same way whether
simulating a process or generating code. In code generation and when running
your application, the block code ignores the settings for USER0, USER1, and
USER2 in favor of the hardware switch settings. When the block reads the
switch settings, it reports the status as shown in Output Values From the User
DIP Switches on the C6701 EVM.

Output Values From the User DIP Switches on the C6701 EVM

USER0 (LSB) USER1 USER2 (MSB) Boolean
Output

Integer
Output

Off Off Off 000 0

On Off Off 001 1

Off On Off 010 2

On On Off 011 3

Off Off On 100 4

On Off On 101 5

Off On On 110 6

On On On 111 7

tic6000.book Page 178 Monday, February 6, 2006 10:39 AM

C6701 EVM DIP Switch

5-179

Dialog Box

Opening this dialog causes a running simulation to pause. Refer to “Changing
Source Block Parameters” in your online Simulink documentation for details.

USER0
Simulate the status of the user-defined DIP switch on the board.

USER1
Simulate the status of the user-defined DIP switch on the board.

USER2
Simulate the status of the user-defined DIP switch on the board.

Data type
Determines how the block reports the status of the user-defined DIP
switches. Boolean is the default, indicating that the output is a logical
string of three bits.

Each bit represents the status of one DIP switch; the LSB is switch USER0
and the MSB is switch USER2. The other data type, Integer, converts the
logical string to an equivalent unsigned 8-bit (uint8) decimal value. For
example, if the logical string is 101, the decimal conversion yields 5.

Sample time

tic6000.book Page 179 Monday, February 6, 2006 10:39 AM

C6701 EVM DIP Switch

5-180

Specifies the time between samples of the signal. The default is 1 second
between samples, for a sample rate of one sample per second
(1/Sample time).

For further information about the user-defined DIP switches on the board,
refer to your Texas Instruments TMS320C6201/6701 Evaluation Module
Technical Reference.

tic6000.book Page 180 Monday, February 6, 2006 10:39 AM

C6701 EVM LED

5-181

5C6701 EVM LEDPurpose Control the light emitting diodes on the C6701 EVM

Library C6701 EVM Board Support in Embedded Target for TI C6000 DSP

Description Adding an C6701 EVM LED block to your Simulink block diagram lets you
trigger one of the red light emitting diodes (LED) on the C6701 EVM. To use
the block, select an LED from the LED list—internal(1) or external(0) and
send a nonzero real scalar to the block. The C6701 EVM LED block triggers the
external status LED (User Status LED0) located on the C6701 EVM mounting
bracket when you select external. When you select internal, the C6701 EVM
LED block triggers the internal status LED (User Status LED1) located at the
top of the C6701 EVM board.

When you add this block to a model, and send a real scalar to the block input,
the block sets the LED state based on the input value it receives:

• When the block receives an input value equal to 0, the specified LED is
turned off (disabled)

• When the block receives a nonzero input value, the specified LED is turned
on (enabled)

To activate the block, send it a scalar of any real data type. Vectors do not work
to activate LEDs; nor do complex numbers as scalars or vectors.

Both LEDs maintain their state until their controlling C6701 EVM LED blocks
receive an input value that changes the state. An enabled LED stays on until
its block receives an input value equal to zero and turns the LED off; a disabled
LED stays off until turned on. Resetting the C6701 EVM turns both LEDs off.

Note Target for C6701 EVM uses the external LED to signal overrun
conditions during processing on the C6701 EVM, when you set the Overrun
option on the Real-Time Workshop dialog to Halt or Continue. Using the
external LED as a status indicator through a C6701 EVM LED block can
conflict with overrun indications. When you are trying to determine why the
external LED is on, recall this point.

tic6000.book Page 181 Monday, February 6, 2006 10:39 AM

C6701 EVM LED

5-182

Dialog Box

LED
Selects which light emitting diode the block activates on the C6701 EVM.
The default setting is external(0).

tic6000.book Page 182 Monday, February 6, 2006 10:39 AM

C6701 EVM RESET

5-183

5C6701 EVM RESETPurpose Reset the C6701 Evaluation Module to initial conditions

Library C6701 EVM Board Support in Embedded Target for TI C6000 DSP

Description Double-clicking this block in a Simulink model window resets the C6701 EVM
that is running the executable code built from the model. When you
double-click the RESET block, the block runs the software reset function
provided by CCS that resets the processor on your C6701 EVM. Applications
running on the board stop and the signal processor returns to the initial
conditions you defined.

Before you build and download your model, add the block to the model as a
stand-alone block. You do not need to connect the block to any block in the
model. When you double-click this block in the block library it resets your
C6701 EVM. In other words, anytime you double-click a C6701 EVM RESET
block you reset your C6701 EVM.

Dialog Box This block does not have settable options and does not provide a user interface
dialog.

tic6000.book Page 183 Monday, February 6, 2006 10:39 AM

C6711DSK

5-184

5C6711DSKPurpose Set target preferences and memory map to generate code for the C6711 DSP
Starter Kit

Library Target Preferences in Embedded Target for TI C6000 DSP for TI DSP

Description Options on the block mask let you set features of code generation for your
C6711 DSP Starter Kit target. Adding this block to your Simulink model
provides access to the processor hardware settings you need to configure when
you generate code from Real-Time Workshop to run on the target.

Any model that you target to the C6711 DSK must include this block, or the
Custom C6000 target preferences block. Real-Time Workshop returns an error
message if a target preferences block is not present in your model.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to set the
target preferences for the model.

Among the processor and target options you specify here are the target board
information, memory mapping and layout, and how to allocate the various code
sections, such as compiler, DSP/BIOS, and custom sections.

Setting the options included in this dialog results in identifying your target to
Real-Time Workshop, Embedded Target for TI C6000 DSP, and Simulink, and
configuring the memory map for your target. Both are essential steps in the
process of targeting any board, custom or explicitly supported like the C6711
DSK or the DM642 EVM.

Unlike most other blocks, you cannot open the block dialog for this block unless
you add the block to a model. When you try to open the block dialog, the block
attempts to connect to your target. It cannot make the connection when the
block is in the library and returns an error message.

Generating Code from Model Subsystems
Real-Time Workshop provides the ability to generate code from a selected
subsystem in a model. To generate code for the C6711 DSK from a subsystem,
the subsystem model must include a C6711DSK target preferences block.

tic6000.book Page 184 Monday, February 6, 2006 10:39 AM

C6711DSK

5-185

Dialog Box

All target preferences block dialogs provide tabbed access to panes that include
options you set for the target processor and target board:

• Board info—select the target board and processor, set the clock speed, and
identify the target.

• Memory—set the memory allocation and layout on the target processor
(memory mapping).

tic6000.book Page 185 Monday, February 6, 2006 10:39 AM

C6711DSK

5-186

• Sections—determine the arrangement and location of the sections on the
target processor such as where to put the DSP/BIOS information and where
to put compiler information.

Board Info Pane
The following options appear on the Board Info pane for the C6000 Target
Preferences dialog.

Board Type
Lets you enter the type of board you are targeting with the model. The
C6711DSK block comes with C6711DSK defined as the default board type.

Device
Lets you select the type of processor on the board you select in CCS board
name. The processor type you enter determines the contents and setting for
options on the Memory and Sections panes in this dialog. If you are targeting
one of the supported boards, Device is disabled and the selected device is fixed.

CPU Clock Speed (MHz)
Shows the clock speed of the processor on your target. When you enter a value,
you are not changing the CPU clock rate, you are reporting the actual rate. If
the value you enter does not match the rate on the target, your model real-time
results may be wrong, and code profiling results will not be correct.

You must enter the actual clock rate the board uses. The rate you enter here
does not change the rate on the board. Setting CPU clock speed to the actual
board rate allows the code you generate to run correctly according to the actual
clock rate of the hardware.

When you generate code for C6000 targets from Simulink models, you may
encounter the software timer. If your model does not include ADC or DAC
blocks, or when the processing rates in your model change (the model is
multirate), you automatically invoke the timer to handle and create interrupts
to drive your model.

Correctly generating interrupts for your model depends on the clock rate of the
CPU on your target. While the default clock rate is 100 MHz on the C6701
EVM, you can change the rate with the DIP switches on the board or from one
of the software utilities provided by TI. C6711 DSK hardware uses a fixed clock
rate of 150 MHz; you cannot change the clock rate. Other C6000 processors
allow different clock speeds.

tic6000.book Page 186 Monday, February 6, 2006 10:39 AM

C6711DSK

5-187

For the timer software to calculate the interrupts correctly, Embedded Target
for TI C6000 DSP needs to know the actual clock rate of your target processor
as you configured it. CPU clock speed lets you tell the timer the rate at which
your target CPU runs. You are telling the software timer what rate to use to
match the CPU rate.

The timer uses the CPU clock rate you specify in CPU clock speed to calculate
the time for each interrupt. For example, if your model includes a sine wave
generator block running at 1 KHz feeding a signal into an FIR filter block, the
timer needs to create interrupts to generate the sine wave samples at the
proper rate. Using the clock rate you choose, 100 MHz for example, the timer
calculates the sine generator interrupt period as follows for the sine block:

• Sine block rate = 1 KHz, or 0.001 s/sample

• CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires

• 100000000/1000 = 1 Sine block interrupt per 1000000 clock ticks

So you must report the correct clock rate or the interrupts come at the wrong
times and the results are incorrect.

Simulator
Select this option when you are targeting a simulator rather than a hardware
target. You must select Simulator to target your code to a C6000 simulator.

Enable High-Speed RTDX
Select this option to tell the code generation process to enable high-speed
RTDX for this model.

CCS Board Name
Contains a list of all the boards defined in CCS Setup. From the list of available
boards, select the one that you are targeting your code for.

CCS Processor Name
Lists the processors on the board you selected for targeting in CCS board
name. In most cases, only one name appears because the board has one
processor. In the multiprocessor case, you select the processor by name from
the list.

tic6000.book Page 187 Monday, February 6, 2006 10:39 AM

C6711DSK

5-188

Memory Pane
When you target any board, you need to specify the layout of the physical
memory on your processor and board to determine how use it for your program.
For supported boards, the board-specific target preferences blocks set the
default memory map.

The Memory pane contains memory options in three areas:

• Physical Memory—specifies the processor and board memory map

• Heap—specifies whether you use a heap and determines the size in words

tic6000.book Page 188 Monday, February 6, 2006 10:39 AM

C6711DSK

5-189

• L2 Cache—enables the L2 cache (where available) and sets the size in kB

Be aware that these options may affect the options on the Sections pane. You
can make selections here that change how you configure options on the
Sections pane.

Most of the information about memory segments and memory allocation is
available from the online help system for Code Composer Studio.

Physical Memory Options
This list shows the physical memory segments avaliable on the board and
processor. By default, target preferences blocks show the memory segments
found on the selected processor. In addition, the Memory pane on
preconfigured target preferences blocks shows the memory segments available
on the board, but off of the processor. C6711DSK boards provide SDRAM
memory segments by default

Name
When you highlight an entry on the Physical memory list, the name of the
entry appears here. To change the name of the existing memory sgment, select
it in the Physical memory list and then type the new name here.

Note You cannot change the names of default processor memory segments.

To add a new physical memory segment to the list, click Add, replace the
temporary label in Name with the one to use, and press Return. Your new
segment appears on the list.

After you add the segment, you can configure the starting address, length, and
contents for the new segment. New segments start with code and data as the
type of content that can be stored in the segment (refer to the Contents option).

Names are case sensitive. NewSegment is not the same as newsegment or
newSegment.

Address
Address reports the starting address for the memory segment showing in
Name. Address entries are in hexadecimal format and limited only by the
board or processor memory.

tic6000.book Page 189 Monday, February 6, 2006 10:39 AM

C6711DSK

5-190

When you are using a processor-specific preferences block, the starting address
shown is the default value. You can change the starting value by entering the
new value directly in Address when you select the memory segment to change.

Length
From the starting address, Length sets the length of the memory allocated to
the segment in Name. As in all memory entries, specify the length in
hexadecimal format, in minimum addressable data units (MADUs). For the
C6000 processor family, the MADU is 8 bytes, one word.

When you are using a processor-specific preferences block, the length shown is
the default value. You can change the value by entering the new value directly
in this option.

Contents
Contents details the kind of program sections that you can store in the memory
segment in Name. As the processor type for the target preferences block
changes, the kinds of information you store in listed memory segments may
change. Generally, the Contents list contains these strings:

• Code—allow code to be stored in the memory segment in Name.

• Data—allow data to be stored in the memory segment in Name.

• Code and Data—allow code and data to be stored in the memory segment in
Name. When you add a new memory segment, this is the default setting for
the contents of the new element.

You may add or use as many segments of each type as you need, within the
limits of the memory on your processor.

Add
Click Add to add a new memory segment to the target memory map. When you
click Add, a new segment name appears, for example NEWMEM1, in Name and on
the Physical memory list. In Name, change the temporary name NEWMEM1 by
entering the new segment name. Entering the new name, or clicking Apply
updates the temporary name on the list to the name you enter.

Remove
This option lets you remove a memory segment from the memory map. Select
the segment to remove on the Physical memory list and click Remove to
delete the segment.

Create Heap

tic6000.book Page 190 Monday, February 6, 2006 10:39 AM

C6711DSK

5-191

Selecting this option enables creating the heap, and enables the Heap size
option.

Using this option you can create a heap in any memory segment on the
Physical memory list. Select the memory segment on the list and then select
Create heap to create a heap in the select segment. After you create the heap,
use the Heap size and Define label options to configure the heap.

The location of the heap in the memory segment is not under your control. The
only way to control the location of the heap in a segment is to make the segment
and the heap the same size. Otherwise, the compiler determines the location of
the heap in the segment.

Heap Size
After you select Create heap, this option lets you specify the size of the heap
in words. Enter the number of words in decimal format. When you enter the
heap size in decimal words, the system converts the decimal value to
hexadecimal format. You can enter the value directly in hexadecimal format as
well. Processors may support different maximum heap sizes.

Define Label
Selecting Create heap enables this option that allows you to name the heap.
Enter your label for the heap in the Heap label option.

Heap Label
Enabled by selecting Define label, you use this option to provide the label for
the heap. Any combination of characters is accepted for the label, except
reserved characters in C/C++ compilers.

Enable L2 Cache
C6711 processors support an L2 cache memory structure that you can
configure as SRAM and partial cache. Both the data memory and the program
share this second-level memory.

L2 Cache size
Once you enable the L2 cache, use this list to determine the size of the cache
allotted. Select the size of the cache from the list.

Sections Pane
Options on this pane let you specify where various program sections should go
in memory. Program sections are distinct from memory segments—sections
are portions of the executable code stored in contiguous memory locations.

tic6000.book Page 191 Monday, February 6, 2006 10:39 AM

C6711DSK

5-192

Among the sections used generally are .text, .bss, .data, and .stack. Some
sections relate to the compiler, some to DSP/BIOS, and some can be custom
sections as you require.

For more information about program sections and objects, refer to the CCS
online help. Most of the definitions and descriptions in this section come from
CCS.

Within this pane, you configure the allocation of sections for Compiler,
DSP/BIOS, and Custom needs.

tic6000.book Page 192 Monday, February 6, 2006 10:39 AM

C6711DSK

5-193

Here are brief definitions of the various kinds of sections in the lists. All
sections do not appear on both lists. The list on which the string appears is
shown in the table.

String Section List Description of the Section Contents

.args DSP/BIOS Argument buffers

.bss Compiler Static and global C variables in the code

.bios DSP/BIOS DSP/BIOS code if you are using DSP/BIOS
options in your program

.cinit Compiler Tables for initializing global and static
variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier and
string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global, defined as
far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS startup
initialization tables section

.hwi DSP/BIOS Dispatch code for interrupt service routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the target
program can read

.pinit Compiler Load allocation of the table of global object
constructors section.

.rtdx_text DSP/BIOS Code sections for the RTDX program
modules

.stack Compiler The global stack

tic6000.book Page 193 Monday, February 6, 2006 10:39 AM

C6711DSK

5-194

You can learn more about memory sections and objects in your Code Composer
Studio online help. Most of the definitions and descriptions in this section come
from the online help for CCS.

Compiler Sections
During program compilation, the C6000 compiler produces both uninitialized
and initialized blocks of data and code. These blocks get allocated into memory
as required by the configuration of your system. On the Compiler sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections. The initialized
sections are:

• .cinit
• .const
• .switch

• .text—created by the assembler.

These sections are uninitialized:

• .bss—created by the assembler.
• .far
• .stack

.switch Compiler Jump tables for switch statements in the
executable code

.sysdata DSP/BIOS Data about DSP/BIOS

.sysinit DSP/BIOS DSP/BIOS initialization startup code

.sysmem Compiler Dynamically allocated object in the code
containing the heap

.text Compiler Load allocation for the literal strings,
executable code, and compiler generated
constants

.trcdata DSP/BIOS TRC mask variable and its initial value
section load allocation

String Section List Description of the Section Contents

tic6000.book Page 194 Monday, February 6, 2006 10:39 AM

C6711DSK

5-195

• .sysmem

Other sections appear on the list as well:

• .data—created by the assembler. The C/C++ compiler does not use this
section.

• .cio
• .pinit

When you highlight a section on the list, Description shows a brief description
of the section. Also, Placement shows you where the section is presently
allocated in memory.

Description
Provides a brief explanation of the contents of the selected entry on the
Compiler sections list.

Placement
Shows you where the selected Compiler sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. C6711 DSK boards provide IRAM and SDRAM.

DSP/BIOS Sections
During program compilation, DSP/BIOS produces both uninitialized and
initialized blocks of data and code. These blocks get allocated into memory as
required by the configuration of your system. On the DSP/BIOS sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections.

Description
Provides a brief explanation of the contents of the selected DSP/BIOS sections
list entry

Placement
Shows where the selected DSP/BIOS sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments available on
C6000 processors, and changes based on the processor you are using.

DSP/BIOS Object Placement
Distinct from the entries on the DSP/BIOS sections list, DSP/BIOS objects like
STS or LOG, if your project uses them, get placed in the memory segment you

tic6000.book Page 195 Monday, February 6, 2006 10:39 AM

C6711DSK

5-196

select from the DSP/BIOS Object Placement list. All DSP/BIOS objects use
the same memory segment. You cannot select the location for individual
objects.

Custom Sections
When your program uses code or data sections that are not included in either
the Compiler sections or DSP/BIOS sections lists, you add the new sections
to this list. Initially, the Custom sections list contains no fixed entries, just a
placeholder for a section for you to define.

Name
You enter the name for your new section here. To add a new section, click Add.
Then replace the temporary name with the name to use. Although the
temporary name includes a period at the beginning you do not need to include
the period in your new name. Names are case sensitive. NewSection is not the
same as newsection, or newSection.

Placement
With your new section added to the Name list, select the memory segment to
which to add your new section. Within the restrictions imposed by the
hardware and compiler, you can select any segment that appears on the list.

Add
Clicking Add lets you configure a new entry to the list of custom sections. When
you click Add, the block provides a new temporary name in Name. Enter the
new section name to add the section to the Custom sections list. After typing
the new name, click Apply to add the new section to the list. Or click OK to add
the section to the list and close the dialog.

Remove
To remove a section from the Custom sections list, select the section to
remove and click Remove. The selected section disappears from the list.

DSP/BIOS Pane
Options on this pane let you specify how to configure tasking features of
DSP/BIOS.

This pane provides options the asynchronous task scheduler uses when you
select the Incorporate DSP/BIOS option in the configuration set for your
model. By default, Incorporate DSP/BIOS is selected and the Embedded

tic6000.book Page 196 Monday, February 6, 2006 10:39 AM

C6711DSK

5-197

Target for TI C6000 DSP creates separate DSP/BIOS tasks for each sample
time in your Simulink model.

DSP/BIOS tasking blocks provide parameters on their block dialogs so you can
specify the DSP/BIOS stack size and stack segment (where the stack is in
memory) for asynchronous tasks created by the DSP/BIOS Task and Triggered
Task blocks.

The code generation process uses the options on this pane to configure TSK
entries in the TSK Task Manager in CCS when it creates DSP/BIOS tasks.

When you choose not to use DSP/BIOS in your project, by clearing the
Incorporate DSP/BIOS the configuration set for your model, you disable the
options in this pane and Embedded Target for TI C6000 DSP uses an
interrupt-based scheduler. It does not create or use DSP/BIOS tasks.

For more information about tasks, refer to the Code Composer Studio online
help. Most of the definitions and descriptions in this section come from CCS.

tic6000.book Page 197 Monday, February 6, 2006 10:39 AM

C6711DSK

5-198

Within this pane, you configure the options for DSP/BIOS tasks, such as the
task manager and scheduler configuration. Note that the Sections pane
includes DSP/BIOS configuration options as well. The options specify the stack
use and locations on the stack for static and dynamic tasks.

Default stack size (bytes)
DSP/BIOS uses a stack to save and restore variables and CPU context
during thread preemption for task threads. This option sets the size of the

tic6000.book Page 198 Monday, February 6, 2006 10:39 AM

C6711DSK

5-199

DSP/BIOS stack in bytes allocated for each task. 4096 bytes is the default
value. You can set any size up to the limits for the processor. Set the stack
size so that tasks do not use more memory than you allocate. While any
task can use more memory than the stack includes, this might cause the
task to write into other memory or data areas, possibly causing
unpredictable behavior.

Stack segment for static tasks
Use this option to specify where to allocate the stack for static tasks. Static
tasks are created whether or not they are needed for operation, compared
to dynamic tasks that the system creates as needed. Tasks that your
program uses often might be good candidates for static tasks. Infrequently
used tasks usually work best as dynamic tasks.

The list offers options SDRAM and ISRAM for locating the stack in memory,
with SDRAM as the default section. The Memory pane provide more options
for the physical memory on the processor.

Stack segment for dynamic tasks
Like static tasks, dynamic tasks use a stack as well. Setting this option
specifies where to locate the stack for dynamic tasks. In this case, SDRAM is
the only valid stack location in memory.

See Also Custom C6000

tic6000.book Page 199 Monday, February 6, 2006 10:39 AM

C6711 DSK ADC

5-200

5C6711 DSK ADCPurpose Configure digitized signal output from the codec to the processor

Library C6711 DSK Board Support in Embedded Target for TI C6000 DSP

Description Use the C6711 DSK ADC (analog-to-digital converter) block to capture and
digitize analog signals from external sources, such as signal generators,
frequency generators or audio devices. Placing an C6711 DSK ADC block in
your Simulink block diagram lets you use the audio coder-decoder module
(codec) on the C6711 DSK to convert an analog input signal to a digital signal
for the digital signal processor.

Most of the configuration options in the block affect the codec. However, the
Output data type, Samples per frame and Scaling options are related to the
model you are using in Simulink, the signal processor on the board, or direct
memory access (DMA) on the board. In the following table, you find each option
listed with the C6711 DSK hardware affected.

You can select one of three input sources from the ADC source list:

• Line In—the codec accepts input from the line in connector (LINE IN) on the
board’s mounting bracket.

• Mic—the codec accepts input from the microphone connector (MIC IN) on
the board mounting bracket.

• Loopback—routes the analog signal from the codec output back to the codec
input. Can be useful in some feedback applications.

Option Affected Hardware

ADC Source Codec

Mic Codec

Output data type TMS320C6711 digital signal processor

Samples per frame Direct memory access functions

Scaling TMS320C6711 digital signal processor

Source gain (dB) Codec

tic6000.book Page 200 Monday, February 6, 2006 10:39 AM

C6711 DSK ADC

5-201

When you select Mic for ADC source, you can select the +20 dB Mic gain boost
check box to add 20 dB to the microphone input signal before the codec digitizes
the signal.

Selecting Loopback for ADC source configures the C6711 DSK to capture the
output from the codec as the input to the C6711 DSK ADC. When you select
Loopback, your model must include both the C6711 DSK ADC and C6711 DSK
DAC blocks.

Source gain (dB) lets you add gain to the input signal before the A/D
conversion. When you select Loopback as the ADC source, your specified
source gain is not added to the input signal. Select the appropriate gain from
the list.

Dialog Box

ADC source
The input source to the codec. Line In is the default.

tic6000.book Page 201 Monday, February 6, 2006 10:39 AM

C6711 DSK ADC

5-202

+20 dB Mic gain boost
Boosts the input signal by +20dB when ADC source is Mic. Gain is applied
before analog-to-digital conversion.

Output data type
Selects the word length and shape of the data from the codec. By default,
double is selected. Options are Double, Single, and Integer

Scaling
Selects whether the codec data is unmodified, or normalized to the output
range to ±1.0, based on the codec data format. Select either Normalize or
Integer Value. Normalize is the default setting.

Source gain (dB)
Specifies the amount to boost the input before conversion. Select from the
range 0.0 to 12.0 dB in 1.5 dB increments. Applies to the input signal when
ADC source is Line In or Mic In.

Samples per frame
Creates frame-based outputs from sample-based inputs. This parameter
specifies the number of samples of the signal the block buffers internally
before it sends the digitized signals, as a frame vector, to the next block in
the model. 64 samples per frame is the default setting. Notice that the
frame rate depends on the sample rate and frame size. For example, if your
input is 32 samples per second, and you select 64 samples per frame, the
frame rate is one frame every two seconds. The throughput remains the
same at 32 samples per second.

See Also C6711 DSK DAC

tic6000.book Page 202 Monday, February 6, 2006 10:39 AM

C6711 DSK DAC

5-203

5C6711 DSK DACPurpose Use and configure the codec to convert digital input to analog output

Library C6711 DSK Board Support in Embedded Target for TI C6000 DSP

Description Adding the C6711 DSK DAC (digital-to-analog converter) block to your
Simulink model provides the means to output an analog signal to the LINE
OUT connection on the C6711 DSK mounting bracket. When you add the
C6711 DSK DAC block, the digital signal received by the codec is converted to
an analog signal. After converting the digital signal to analog form
(digital-to-analog (D/A) conversion), the codec sends the signal to the output
audio jack.

One of the configuration options in the block affects the codec. The remaining
options relate to the model you are using in Simulink and the signal processor
on the board. In the following table, you find each option listed with the C6711
DSK hardware affected by your selection.

To attenuate the output signal after the D/A conversion, select an attenuation
from the DAC attenuation list. Available attenuation values range from 0.0 to
36.0 dB in 1.5 dB increments. You must select from the list; you cannot enter a
value for the attenuation.

Option Affected Hardware

DAC attenuation Codec

Overflow mode TMS320C6711 Digital Signal Processor

Scaling TMS320C6711 Digital Signal Processor

tic6000.book Page 203 Monday, February 6, 2006 10:39 AM

C6711 DSK DAC

5-204

Dialog Box

Scaling
Selects whether the input to the codec represents unmodified data, or data
that has been normalized to the range ±1.0. Matching the setting for the
C6711 DSK ADC block is usually appropriate here.

DAC attenuation
Specifies the amount to attenuate the block output after D/A conversion.

Overflow mode
Determines how the codec responds to data that is outside the range
specified by the Scaling parameter.

See Also C6711 DSK ADC

tic6000.book Page 204 Monday, February 6, 2006 10:39 AM

C6711 DSK DIP Switch

5-205

5C6711 DSK DIP SwitchPurpose Simulate or read the user-defined DIP switches on the C6711 DSK

Library C6711 DSK Board Support in Embedded Target for TI C6000 DSP

Description Added to your model, this block behaves differently in simulation than in code
generation and targeting.

Simulation—the options USER_SW1, USER_SW2, and USER_SW3 generate
output to simulate the settings of the user-defined dual inline pin (DIP)
switches on your C6711 DSK. Each option turns the associated DIP switch on
when you select it. The switches are independent of one another.

By defining the switches to represent actions on your target, DIP switches let
you modify the operation of your process by reconfiguring the switch settings.

Use the Data type to specify whether the DIP switch options output an integer
or a logical string of bits to represent the status of the switches. The table that
follows presents all the option setting combinations with the result of your
Data type selection.

Selecting the Integer data type results in the switch settings generating
integers in the range from 0 to 7 (uint8), corresponding to converting the string

Option Settings to Simulate the User DIP Switches on the C6711 DSK

USER_SW1
(LSB)

USER_SW2 USER_SW3
(MSB)

Boolean
Output

Integer
Output

Cleared Cleared Cleared 000 0

Selected Cleared Cleared 001 1

Cleared Selected Cleared 010 2

Selected Selected Cleared 011 3

Cleared Cleared Selected 100 4

Selected Cleared Selected 101 5

Cleared Selected Selected 110 6

Selected Selected Selected 111 7

tic6000.book Page 205 Monday, February 6, 2006 10:39 AM

C6711 DSK DIP Switch

5-206

of individual switch settings to a decimal value. In the Boolean data type, the
output string presents the separate switch setting for each switch, with the
USER_SW1 status represented by the least significant bit (LSB) and the status
of USER_SW3 represented by the most significant bit (MSB).

Code generation and targeting—the code generated by the block reads the
physical switch settings of the user switches on the board and reports them as
shown in Table . Your process uses the result in the same way whether in
simulation or in code generation. In code generation and when running your
application, the block code ignores the settings for USER_SW1, USER_SW2,
and USER_SW3 in favor of reading the hardware switch settings. When the
block reads the DIP switches, it reports the results as either a Boolean string
or an integer value as Output Values From The User DIP Switches on the
C6711 DSK shows

Output Values From The User DIP Switches on the C6711 DSK

USER_SW1
(LSB)

USER_SW2 USER_SW3
(MSB)

Boolean
Output

Integer
Output

Off Off Off 000 0

On Off Off 001 1

Off On Off 010 2

On On Off 011 3

Off Off On 100 4

On Off On 101 5

Off On On 110 6

On On On 111 7

tic6000.book Page 206 Monday, February 6, 2006 10:39 AM

C6711 DSK DIP Switch

5-207

Dialog Box

Opening this dialog causes a running simulation to pause. Refer to “Changing
Source Block Parameters” in your online Simulink documentation for details.

USER_SW1
Simulate the status of the user-defined DIP switch on the board.

USER_SW2
Simulate the status of the user-defined DIP switch on the board.

USER_SW3
Simulate the status of the user-defined DIP switch on the board.

Data type
Determines how the block reports the status of the user-defined DIP
switches. Boolean is the default, indicating that the output is a logical
string of three bits.

Each bit represents the status of one DIP switch; the LSB is switch
USER_SW1 and the MSB is switch USER_SW3. The other data type,
Integer, converts the logical string to an equivalent unsigned 8-bit (uint8)
decimal value. For example, if the logical string is 101, the decimal
conversion yields 5.

tic6000.book Page 207 Monday, February 6, 2006 10:39 AM

C6711 DSK DIP Switch

5-208

Sample time
Specifies the time between samples of the signal. The default is 1 second
between samples, for a sample rate of one sample per second
(1/Sample time).

tic6000.book Page 208 Monday, February 6, 2006 10:39 AM

C6711 DSK LED

5-209

5C6711 DSK LEDPurpose Control the user-defined light emitting diodes on the C6711 DSK

Library C6711 DSK Board Support in Embedded Target for TI C6000 DSP

Description Adding the C6711 DSK LED block to your Simulink block diagram lets you
trigger all three of the user red light emitting diodes (LED) on the C6711 DSK.
To use the block, send a nonzero real scalar to the block. The C6711 DSK LED
block triggers all three user LEDs located on the C6711 DSK.

When you add this block to a model, and send a real scalar to the block input,
the block sets the LED state based on the input value it receives:

• When the block receives an input value equal to 0, the specified LEDs are
turned off (disabled)

• When the block receives a nonzero input value, the specified LEDs are
turned on (enabled)

To activate the block, send it a scalar of any real data type. Vectors do not work
to activate LEDs; nor do complex numbers as scalars or vectors.

All LEDs maintain their state until their controlling C6711 DSK LED block
receives an input value that changes the state. Enabled LEDs stay on until the
block receives an input value equal to zero and turns the LEDs off; disabled
LEDs stays off until turned on. Resetting the C6711 DSK turns off all user
LEDs.

Dialog Box

This dialog does not have any user-selectable options.

tic6000.book Page 209 Monday, February 6, 2006 10:39 AM

C6711 DSK RESET

5-210

5C6711 DSK RESETPurpose Reset the C6711 DSK to initial conditions

Library C6711 DSK Board Support in Embedded Target for TI C6000 DSP

Description Double-clicking this block in a Simulink model window resets the C6711 DSK
that is running the executable code built from the model. When you
double-click the C6713 DSK RESET block, the block runs the software reset
function provided by CCS that resets the processor on your C6711 DSK.
Applications running on the board stop and the signal processor returns to the
initial conditions you defined.

Before you build and download your model, add the block to the model as a
stand-alone block. You do not need to connect the block to any block in the
model. When you double-click this block in the block library it resets your
C6711 DSK. In other words, anytime you double-click a C6711 DSK RESET
block you reset your C6711 DSK.

Dialog Box This block does not have settable options and does not provide a user interface
dialog.

tic6000.book Page 210 Monday, February 6, 2006 10:39 AM

C6713DSK

5-211

5C6713DSKPurpose Set target preferences and memory map to generate code for the C6713 DSP
Starter Kit

Library Target Preferences in Embedded Target for TI C6000 DSP for TI DSP

Description Options on the block mask let you set features of code generation for your
C6713 DSP Starter Kit target. Adding this block to your Simulink model
provides access to the processor hardware settings you need to configure when
you generate code from Real-Time Workshop to run on the target.

Any model that you target to the C6713 DSK must include this block, or the
Custom C6000 target preferences block. Real-Time Workshop returns an error
message if a target preferences block is not present in your model.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to set the
target preferences for the model.

Among the processor and target options you specify here are the target board
information, memory mapping and layout, and how to allocate the various code
sections, such as compiler, DSP/BIOS, and custom sections.

Setting the options included in this dialog results in identifying your target to
Real-Time Workshop, Embedded Target for TI C6000 DSP, and Simulink, and
configuring the memory map for your target. Both are essential steps in the
process of targeting any board, custom or explicitly supported like the C6711
DSK or the DM642 EVM.

Unlike most other blocks, you cannot open the block dialog for this block unless
you add the block to a model. When you try to open the block dialog, the block
attempts to connect to your target. It cannot make the connection when the
block is in the library and returns an error message.

Generating Code from Model Subsystems
Real-Time Workshop provides the ability to generate code from a selected
subsystem in a model. To generate code for the C6713 DSK from a subsystem,
the subsystem model must include a C6713DSK target preferences block.

tic6000.book Page 211 Monday, February 6, 2006 10:39 AM

C6713DSK

5-212

Dialog Box

All target preferences block dialogs provide tabbed access to panes that include
options you set for the target processor and target board:

• Board info—select the target board and processor, set the clock speed, and
identify the target.

• Memory—set the memory allocation and layout on the target processor
(memory mapping).

tic6000.book Page 212 Monday, February 6, 2006 10:39 AM

C6713DSK

5-213

• Sections—determine the arrangement and location of the sections on the
target processor such as where to put the DSP/BIOS information and where
to put compiler information.

Board Info Pane
The following options appear on the Board Info pane for the C6000 Target
Preferences dialog.

Board Type
Lets you enter the type of board you are targeting with the model. You can
enter Custom to support any board based on one of the supported processors, or
enter the name of one of the supported boards, such as C6711DSK. Board type
for this block is set to C6713 DSK by default.

Device
Lets you select the type of processor on the board you select in CCS board
name. The processor type you enter determines the contents and setting for
options on the Memory and Sections panes in this dialog. If you are targeting
one of the supported boards, Device is disabled and the selected device is fixed.

CPU Clock Speed (MHz)
Shows the clock speed of the processor on your target. When you enter a value,
you are not changing the CPU clock rate, you are reporting the actual rate. If
the value you enter does not match the rate on the target, your model real-time
results may be wrong, and code profiling results will not be correct.

You must enter the actual clock rate the board uses. The rate you enter here
does not change the rate on the board. Setting CPU clock speed to the actual
board rate allows the code you generate to run correctly according to the actual
clock rate of the hardware.

When you generate code for C6000 targets from Simulink models, you may
encounter the software timer. If your model does not include ADC or DAC
blocks, or when the processing rates in your model change (the model is
multirate), you automatically invoke the timer to handle and create interrupts
to drive your model.

Correctly generating interrupts for your model depends on the clock rate of the
CPU on your target. While the default clock rate is 100 MHz on the C6701
EVM, you can change the rate with the DIP switches on the board or from one
of the software utilities provided by TI. C6711 DSK hardware uses a fixed clock

tic6000.book Page 213 Monday, February 6, 2006 10:39 AM

C6713DSK

5-214

rate of 150 MHz; you cannot change the clock rate. Other C6000 processors
allow different clock speeds.

For the timer software to calculate the interrupts correctly, Embedded Target
for TI C6000 DSP needs to know the actual clock rate of your target processor
as you configured it. CPU clock speed lets you tell the timer the rate at which
your target CPU runs. You are telling the software timer what rate to use to
match the CPU rate.

The timer uses the CPU clock rate you specify in CPU clock speed to calculate
the time for each interrupt. For example, if your model includes a sine wave
generator block running at 1 KHz feeding a signal into an FIR filter block, the
timer needs to create interrupts to generate the sine wave samples at the
proper rate. Using the clock rate you choose, 100 MHz for example, the timer
calculates the sine generator interrupt period as follows for the sine block:

• Sine block rate = 1 KHz, or 0.001 s/sample

• CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires

• 100000000/1000 = 1 Sine block interrupt per 1000000 clock ticks

So you must report the correct clock rate or the interrupts come at the wrong
times and the results are incorrect.

Simulator
Select this option when you are targeting a simulator rather than a hardware
target. You must select Simulator to target your code to a C6000 simulator.

Enable High-Speed RTDX
Select this option to tell the code generation process to enable high-speed
RTDX for code generated from this model.

CCS Board Name
Contains a list of all the boards defined in CCS Setup. From the list of available
boards, select the one that you are targeting your code for.

CCS Processor Name
Lists the processors on the board you selected for targeting in CCS board
name. In most cases, only one name appears because the board has one
processor. In the multiprocessor case, you select the processor by name from
the list.

tic6000.book Page 214 Monday, February 6, 2006 10:39 AM

C6713DSK

5-215

Memory Pane
When you target any board, you need to specify the layout of the physical
memory on your processor and board to determine how use it for your program.
For supported boards, the board-specific target preferences blocks set the
default memory map.

The Memory pane contains memory options in three areas:

• Physical Memory—specifies the processor and board memory map

• Heap—specifies whether you use a heap and determines the size in words

tic6000.book Page 215 Monday, February 6, 2006 10:39 AM

C6713DSK

5-216

• L2 Cache—enables the L2 cache (where available) and sets the size in kB

Be aware that these options may affect the options on the Sections pane. You
can make selections here that change how you configure options on the
Sections pane.

Most of the information about memory segments and memory allocation is
available from the online help system for Code Composer Studio.

Physical Memory Options
This list shows the physical memory segments avaliable on the board and
processor. By default, target preferences blocks show the memory segments
found on the selected processor. In addition, the Memory pane on
preconfigured target preferences blocks shows the memory segments available
on the board, but off of the processor. C6713 DSK boards provide IRAM and
SDRAM memory segments by default

Name
When you highlight an entry on the Physical memory list, the name of the
entry appears here. To change the name of the existing memory sgment, select
it in the Physical memory list and then type the new name here.

Note You cannot change the names of default processor memory segments.

To add a new physical memory segment to the list, click Add, replace the
temporary label in Name with the one to use, and press Return. Your new
segment appears on the list.

After you add the segment, you can configure the starting address, length, and
contents for the new segment. New segments start with code and data as the
type of content that can be stored in the segment (refer to the Contents option).

Names are case sensitive. NewSegment is not the same as newsegment or
newSegment.

Address
Address reports the starting address for the memory segment showing in
Name. Address entries are in hexadecimal format and limited only by the
board or processor memory.

tic6000.book Page 216 Monday, February 6, 2006 10:39 AM

C6713DSK

5-217

When you are using a processor-specific preferences block, the starting address
shown is the default value. You can change the starting value by entering the
new value directly in Address when you select the memory segment to change.

Length
From the starting address, Length sets the length of the memory allocated to
the segment in Name. As in all memory entries, specify the length in
hexadecimal format, in minimum addressable data units (MADUs). For the
C6000 processor family, the MADU is 8 bytes, one word.

When you are using a processor-specific preferences block, the length shown is
the default value. You can change the value by entering the new value directly
in this option.

Contents
Contents details the kind of program sections that you can store in the memory
segment in Name. As the processor type for the target preferences block
changes, the kinds of information you store in listed memory segments may
change. Generally, the Contents list contains these strings:

• Code—allow code to be stored in the memory segment in Name.

• Data—allow data to be stored in the memory segment in Name.

• Code and Data—allow code and data to be stored in the memory segment in
Name. When you add a new memory segment, this is the default setting for
the contents of the new element.

You may add or use as many segments of each type as you need, within the
limits of the memory on your processor.

Add
Click Add to add a new memory segment to the target memory map. When you
click Add, a new segment name appears, for example NEWMEM1, in Name and on
the Physical memory list. In Name, change the temporary name NEWMEM1 by
entering the new segment name. Entering the new name, or clicking Apply
updates the temporary name on the list to the name you enter.

Remove
This option lets you remove a memory segment from the memory map. Select
the segment to remove on the Physical memory list and click Remove to
delete the segment.

Create Heap

tic6000.book Page 217 Monday, February 6, 2006 10:39 AM

C6713DSK

5-218

Selecting this option enables creating the heap, and enables the Heap size
option.

Using this option you can create a heap in any memory segment on the
Physical memory list. Select the memory segment on the list and then select
Create heap to create a heap in the select segment. After you create the heap,
use the Heap size and Define label options to configure the heap.

The location of the heap in the memory segment is not under your control. The
only way to control the location of the heap in a segment is to make the segment
and the heap the same size. Otherwise, the compiler determines the location of
the heap in the segment.

Heap Size
After you select Create heap, this option lets you specify the size of the heap
in words. Enter the number of words in decimal format. When you enter the
heap size in decimal words, the system converts the decimal value to
hexadecimal format. You can enter the value directly in hexadecimal format as
well. Processors may support different maximum heap sizes.

Define Label
Selecting Create heap enables this option that allows you to name the heap.
Enter your label for the heap in the Heap label option.

Heap Label
Enabled by selecting Define label, you use this option to provide the label for
the heap. Any combination of characters is accepted for the label, except
reserved characters in C/C++ compilers.

Enable L2 Cache
C6713 processors support an L2 cache memory structure that you can
configure as SRAM and partial cache.

L2 Cache size
Once you enable the L2 cache, use this list to determine the size of the cache
allotted. Select the size of the cache from the list.

Sections Pane
Options on this pane let you specify where various program sections should go
in memory. Program sections are distinct from memory segments—sections
are portions of the executable code stored in contiguous memory locations.
Among the sections used generally are .text, .bss, .data, and .stack. Some

tic6000.book Page 218 Monday, February 6, 2006 10:39 AM

C6713DSK

5-219

sections relate to the compiler, some to DSP/BIOS, and some can be custom
sections as you require.

For more information about program sections and objects, refer to the CCS
online help. Most of the definitions and descriptions in this section come from
CCS.

Within this pane, you configure the allocation of sections for Compiler,
DSP/BIOS, and Custom needs.

tic6000.book Page 219 Monday, February 6, 2006 10:39 AM

C6713DSK

5-220

Here are brief definitions of the various kinds of sections in the lists. All
sections do not appear on both lists. The list on which the string appears is
shown in the table.

String Section List Description of the Section Contents

.args DSP/BIOS Argument buffers

.bss Compiler Static and global C variables in the code

.bios DSP/BIOS DSP/BIOS code if you are using DSP/BIOS
options in your program

.cinit Compiler Tables for initializing global and static
variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier and
string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global, defined as
far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS startup
initialization tables section

.hwi DSP/BIOS Dispatch code for interrupt service routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the target
program can read

.pinit Compiler Load allocation of the table of global object
constructors section.

.rtdx_text DSP/BIOS Code sections for the RTDX program
modules

.stack Compiler The global stack

tic6000.book Page 220 Monday, February 6, 2006 10:39 AM

C6713DSK

5-221

You can learn more about memory sections and objects in your Code Composer
Studio online help. Most of the definitions and descriptions in this section come
from the online help for CCS.

Compiler Sections
During program compilation, the C6000 compiler produces both uninitialized
and initialized blocks of data and code. These blocks get allocated into memory
as required by the configuration of your system. On the Compiler sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections. The initialized
sections are:

• .cinit
• .const
• .switch

• .text—created by the assembler.

These sections are uninitialized:

• .bss—created by the assembler.
• .far
• .stack

.switch Compiler Jump tables for switch statements in the
executable code

.sysdata DSP/BIOS Data about DSP/BIOS

.sysinit DSP/BIOS DSP/BIOS initialization startup code

.sysmem Compiler Dynamically allocated object in the code
containing the heap

.text Compiler Load allocation for the literal strings,
executable code, and compiler generated
constants

.trcdata DSP/BIOS TRC mask variable and its initial value
section load allocation

String Section List Description of the Section Contents

tic6000.book Page 221 Monday, February 6, 2006 10:39 AM

C6713DSK

5-222

• .sysmem

Other sections appear on the list as well:

• .data—created by the assembler. The C/C++ compiler does not use this
section.

• .cio
• .pinit

When you highlight a section on the list, Description shows a brief description
of the section. Also, Placement shows you where the section is presently
allocated in memory.

Description
Provides a brief explanation of the contents of the selected entry on the
Compiler sections list.

Placement
Shows you where the selected Compiler sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. For C6713 DSK targets, the list include IRAM and
SDRAM segments.

DSP/BIOS Sections
During program compilation, DSP/BIOS produces both uninitialized and
initialized blocks of data and code. These blocks get allocated into memory as
required by the configuration of your system. On the DSP/BIOS sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections.

Description
Provides a brief explanation of the contents of the selected DSP/BIOS sections
list entry

Placement
Shows where the selected DSP/BIOS sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments available on
C6000 processors, and changes based on the processor you are using.

DSP/BIOS Object Placement
Distinct from the entries on the DSP/BIOS sections list, DSP/BIOS objects like
STS or LOG, if your project uses them, get placed in the memory segment you

tic6000.book Page 222 Monday, February 6, 2006 10:39 AM

C6713DSK

5-223

select from the DSP/BIOS Object Placement list. All DSP/BIOS objects use
the same memory segment. You cannot select the location for individual
objects.

Custom Sections
When your program uses code or data sections that are not included in either
the Compiler sections or DSP/BIOS sections lists, you add the new sections
to this list. Initially, the Custom sections list contains no fixed entries, just a
placeholder for a section for you to define.

Name
You enter the name for your new section here. To add a new section, click Add.
Then replace the temporary name with the name to use. Although the
temporary name includes a period at the beginning you do not need to include
the period in your new name. Names are case sensitive. NewSection is not the
same as newsection, or newSection.

Placement
With your new section added to the Name list, select the memory segment to
which to add your new section. Within the restrictions imposed by the
hardware and compiler, you can select any segment that appears on the list.

Add
Clicking Add lets you configure a new entry to the list of custom sections. When
you click Add, the block provides a new temporary name in Name. Enter the
new section name to add the section to the Custom sections list. After typing
the new name, click Apply to add the new section to the list. Or click OK to add
the section to the list and close the dialog.

Remove
To remove a section from the Custom sections list, select the section to
remove and click Remove. The selected section disappears from the list.

DSP/BIOS Pane
Options on this pane let you specify how to configure tasking features of
DSP/BIOS.

This pane provides options the asynchronous task scheduler uses when you
select the Incorporate DSP/BIOS option in the configuration set for your
model. By default, Incorporate DSP/BIOS is selected and the Embedded

tic6000.book Page 223 Monday, February 6, 2006 10:39 AM

C6713DSK

5-224

Target for TI C6000 DSP creates separate DSP/BIOS tasks for each sample
time in your Simulink model.

DSP/BIOS tasking blocks provide parameters on their block dialogs so you can
specify the DSP/BIOS stack size and stack segment (where the stack is in
memory) for asynchronous tasks created by the DSP/BIOS Task and Triggered
Task blocks.

The code generation process uses the options on this pane to configure TSK
entries in the TSK Task Manager in CCS when it creates DSP/BIOS tasks.

When you choose not to use DSP/BIOS in your project, by clearing the
Incorporate DSP/BIOS the configuration set for your model, you disable the
options in this pane and Embedded Target for TI C6000 DSP uses an
interrupt-based scheduler. It does not create or use DSP/BIOS tasks.

For more information about tasks, refer to the Code Composer Studio online
help. Most of the definitions and descriptions in this section come from CCS.

tic6000.book Page 224 Monday, February 6, 2006 10:39 AM

C6713DSK

5-225

Within this pane, you configure the options for DSP/BIOS tasks, such as the
task manager and scheduler configuration. Note that the Sections pane
includes DSP/BIOS configuration options as well. The options specify the stack
use and locations on the stack for static and dynamic tasks.

Default stack size (bytes)
DSP/BIOS uses a stack to save and restore variables and CPU context
during thread preemption for task threads. This option sets the size of the

tic6000.book Page 225 Monday, February 6, 2006 10:39 AM

C6713DSK

5-226

DSP/BIOS stack in bytes allocated for each task. 4096 bytes is the default
value. You can set any size up to the limits for the processor. Set the stack
size so that tasks do not use more memory than you allocate. While any
task can use more memory than the stack includes, this might cause the
task to write into other memory or data areas, possibly causing
unpredictable behavior.

Stack segment for static tasks
Use this option to specify where to allocate the stack for static tasks. Static
tasks are created whether or not they are needed for operation, compared
to dynamic tasks that the system creates as needed. Tasks that your
program uses often might be good candidates for static tasks. Infrequently
used tasks usually work best as dynamic tasks.

The list offers options SDRAM and IRAM for locating the stack in memory,
with SDRAM as the default section. The Memory pane provide more options
for the physical memory on the processor.

Stack segment for dynamic tasks
Like static tasks, dynamic tasks use a stack as well. Setting this option
specifies where to locate the stack for dynamic tasks. In this case, SDRAM is
the only valid stack location in memory.

See Also Custom C6000

tic6000.book Page 226 Monday, February 6, 2006 10:39 AM

C6713 DSK ADC

5-227

5C6713 DSK ADCPurpose Configure digitized signal output from the codec to the processor

Library C6713 DSK Board Support in Embedded Target for TI C6000 DSP

Description Use the C6713 DSK ADC (analog-to-digital converter) block to capture and
digitize analog signals from external sources, such as signal generators,
frequency generators or audio devices. Placing an C6713 DSK ADC block in
your Simulink block diagram lets you use the audio coder-decoder module
(codec) on the C6713 DSK to convert an analog input signal to a digital signal
for the digital signal processor.

Most of the configuration options in the block affect the codec. However, the
Output data type, Samples per frame and Scaling options are related to the
model you are using in Simulink, the signal processor on the board, or direct
memory access (DMA) on the board. In the following table, you find each option
listed with the C6713 DSK hardware affected.

You can select one of three input sources from the ADC source list:

• Line In—the codec accepts input from the line in connector (LINE IN) on the
board’s mounting bracket.

• Mic—the codec accepts input from the microphone connector (MIC IN) on the
board mounting bracket.

• Loopback—routes the analog signal from the codec output back to the codec
input. Can be useful in some feedback applications.

Option Affected Hardware

ADC source Codec

Mic Codec

Output data type TMS320C6713 digital signal processor

Samples per frame Direct memory access functions

Scaling TMS320C6713 digital signal processor

Source gain (dB) Codec

tic6000.book Page 227 Monday, February 6, 2006 10:39 AM

C6713 DSK ADC

5-228

Use the Stereo check box to indicate whether the audio input is monaural or
stereo. Clear the check box to choose monaural audio input. Select the check
box to enable stereo audio input. Monaural (mono) input is left channel only,
but the output sends left channel content to both the left and right output
channels; stereo uses the left and right channels on input and output.

The block uses frame-based processing of inputs, buffering the input data into
frames at the specified samples per frame rate. In Simulink, the block puts
monaural data into an N-element column vector. Stereo data input forms an
N-by-2 matrix with N data values and two stereo channels (left and right).

When the samples per frame setting is more than one, each frame of data is
either the N-element vector (monaural input) or N-by-2 matrix (stereo input).
For monaural input, the elements in each frame form the column vector of
input audio data. In the stereo format, the frame is the matrix of audio data
represented by the matrix rows and columns—the rows are the audio data
samples and the columns are the left and right audio channels.

When you select Mic for ADC source, you can select the +20 dB Mic gain boost
check box to add 20 dB to the microphone input signal before the codec digitizes
the signal.

Source gain (dB) lets you add gain to the input signal before the A/D
conversion. When you select Loopback as the ADC source, your specified
source gain is not added to the input signal. Select the appropriate gain from
the list.

tic6000.book Page 228 Monday, February 6, 2006 10:39 AM

C6713 DSK ADC

5-229

Dialog Box

ADC source
The input source to the codec. Line In is the default. Selecting the Mic
option enables the +20 dB Mic gain boost option.

+20 dB Mic gain boost
Boosts the input signal by +20dB when ADC source is Mic. Gain is applied
before analog-to-digital conversion.

tic6000.book Page 229 Monday, February 6, 2006 10:39 AM

C6713 DSK ADC

5-230

Stereo
Indicates whether the input audio data is in monaural or stereo format.
Select the check box to enable stereo input. Clear the check box when you
input monaural data. By default, stereo operation is enabled.

Output data type
Selects the word length and shape of the data from the codec. By default,
double is selected. Options are Double, Single, and Integer.

Scaling
Selects whether the codec data is unmodified, or normalized to the output
range to ±1.0, based on the codec data format. Select either Normalize or
Integer Value. Normalize is the default setting.

Samples per frame
Creates frame-based outputs from sample-based inputs. This parameter
specifies the number of samples of the signal the block buffers internally
before it sends the digitized signals, as a frame vector, to the next block in
the model. 64 samples per frame is the default setting. Notice that the
frame rate depends on the sample rate and frame size. For example, if your
input is 8kHz samples per second, and you select 64 samples per frame, the
frame rate is 125 frames every second. The throughput remains the same
at 64 samples per second.

See Also C6713 DSK DAC

tic6000.book Page 230 Monday, February 6, 2006 10:39 AM

C6713 DSK DAC

5-231

5C6713 DSK DACPurpose Configure the codec and peripherals to convert digital input to analog output
at the analog output port of the board

Library C6713 DSK Board Support in Embedded Target for TI C6000 DSP

Description Adding the C6713 DSK DAC (digital-to-analog converter) block to your
Simulink model provides the means to output an analog signal to the analog
output jack on the C6713 DSK. When you add the C6713 DSK DAC block, the
digital signal received by the codec is converted to an analog signal. After
converting the digital signal to analog form (digital-to-analog (D/A)
conversion), the codec sends the signal to the output jack.

One of the configuration options in the block affects the codec. The remaining
options relate to the model you are using in Simulink and the signal processor
on the board. In the following table, you find each option listed with the
C6713 DSK hardware affected by your selection.

Option Affected Hardware

Overflow mode TMS320C6713 Digital Signal Processor

Scaling TMS320C6713 Digital Signal Processor

Word length Codec

tic6000.book Page 231 Monday, February 6, 2006 10:39 AM

C6713 DSK DAC

5-232

Dialog Box

Word length
Sets the DAC to interpret the input data word length. Without this setting,
the DAC cannot convert the digital data to analog correctly. The default
value is 16 bits, with options of 20, 24, and 32 bits. Select the word length
to match the ADC setting.

Scaling
Selects whether the input to the codec represents unmodified data, or data
that has been normalized to the range ±1.0. Matching the setting for the
C6416 DSK ADC block is appropriate here.

Overflow mode
Determines how the codec responds to data that is outside the range
specified by the Scaling parameter. You can choose Wrap or Saturate
options to apply to the result of an overflow in an operation. Saturation is
the less efficient operating mode if efficiency is important to your
development.

See Also C6713 DSK ADC

tic6000.book Page 232 Monday, February 6, 2006 10:39 AM

C6713 DSK DIP Switch

5-233

5C6713 DSK DIP SwitchPurpose Simulate or read the user-defined DIP switches on the C6713 DSK

Library C6713 DSK Board Support in Embedded Target for TI C6000 DSP

Description Added to your model, this block behaves differently in simulation than in code
generation and targeting.

In Simulation—the options Switch 0, Switch 1, Switch 2, and Switch 3
generate output to simulate the settings of the user-defined dual inline pin
(DIP) switches on your C6713 DSK. Each option turns the associated DIP
switch on when you select it. The switches are independent of one another.

By defining the switches to represent actions on your target, DIP switches let
you modify the operation of your process by reconfiguring the switch settings.

Use the Data type to specify whether the DIP switch options output an integer
or a logical string of bits to represent the status of the switches. The table that
follows presents all the option setting combinations with the result of your
Data type selection.

Option Settings to Simulate the User DIP Switches on the C6713 DSK

Switch 0
(LSB)

Switch 1 Switch 2 Switch 3
(MSB)

Boolean
Output

Integer Output

Cleared Cleared Cleared Cleared 0000 0

Selected Cleared Cleared Cleared 0001 1

Cleared Selected Cleared Cleared 0010 2

Selected Selected Cleared Cleared 0011 3

Cleared Cleared Selected Cleared 0100 4

Selected Cleared Selected Cleared 0101 5

Cleared Selected Selected Cleared 0110 6

Selected Selected Selected Cleared 0111 7

Cleared Cleared Cleared Selected 1000 8

Selected Cleared Cleared Selected 1001 9

tic6000.book Page 233 Monday, February 6, 2006 10:39 AM

C6713 DSK DIP Switch

5-234

Selecting the Integer data type results in the switch settings generating
integers in the range from 0 to 15 (uint8), corresponding to converting the
string of individual switch settings to a decimal value. In the Boolean data
type, the output string presents the separate switch setting for each switch,
with the Switch 0 status represented by the least significant bit (LSB) and the
status of Switch 3 represented by the most significant bit (MSB).

In Code generation and targeting—the code generated by the block reads the
physical switch settings of the user switches on the board and reports them as
shown above. Your process uses the result in the same way whether in
simulation or in code generation. In code generation and when running your
application, the block code ignores the settings for Switch 0, Switch 1,
Switch 2 and Switch 3 in favor of reading the hardware switch settings. When
the block reads the DIP switches, it reports the results as either a Boolean
string or an integer value as the table below shows.

Cleared Selected Cleared Selected 1010 10

Selected Selected Cleared Selected 1011 11

Cleared Cleared Selected Selected 1100 12

Selected Cleared Selected Selected 1101 13

Cleared Selected Selected Selected 1110 14

Selected Selected Selected Selected 1111 15

Option Settings to Simulate the User DIP Switches on the C6713 DSK (Continued)

Switch 0
(LSB)

Switch 1 Switch 2 Switch 3
(MSB)

Boolean
Output

Integer Output

Output Values From The User DIP Switches on the C6713 DSK

Switch 0
(LSB)

Switch 1 Switch 2 Switch 3
(MSB)

Boolean
Output

Integer Output

Off Off Off Off 0000 0

On Off Off Off 0001 1

Off On Off Off 0010 2

tic6000.book Page 234 Monday, February 6, 2006 10:39 AM

C6713 DSK DIP Switch

5-235

On On Off Off 0011 3

Off Off On Off 0100 4

On Off On Off 0101 5

Off On On Off 0110 6

On On On Off 0111 7

Off Off Off On 1000 8

On Off Off On 1001 9

Off On Off On 1010 10

On On Off On 1011 11

Off Off On On 1100 12

On Off On On 1101 13

Off On On On 1110 14

On On On On 1111 15

Output Values From The User DIP Switches on the C6713 DSK

Switch 0
(LSB)

Switch 1 Switch 2 Switch 3
(MSB)

Boolean
Output

Integer Output

tic6000.book Page 235 Monday, February 6, 2006 10:39 AM

C6713 DSK DIP Switch

5-236

Dialog Box

Opening this dialog causes a running simulation to pause. Refer to “Changing
Source Block Parameters” in your online Simulink documentation for details.

Switch 0
Simulate the status of the user-defined DIP switch on the board.

Switch 1
Simulate the status of the user-defined DIP switch on the board.

Switch 2
Simulate the status of the user-defined DIP switch on the board.

Switch 3
Simulate the status of the user-defined DIP switch on the board.

Data type
Determines how the block reports the status of the user-defined DIP
switches. Boolean is the default, indicating that the output is a vector of
four logical values, either 0 or 1.

tic6000.book Page 236 Monday, February 6, 2006 10:39 AM

C6713 DSK DIP Switch

5-237

Each vector element represents the status of one DIP switch; the first
switch is switch Switch 0 and the fourth is switch Switch 3. The data type
Integer converts the logical string to an equivalent unsigned 8-bit (uint8)
value. For example, when the logical string generated by the switches is
0101, the conversion yields 5—the LSB is 1 and the MSB is 0.

Sample time
Specifies the time between samples of the signal. The default is 1 second
between samples, for a sample rate of one sample per second
(1/Sample time).

tic6000.book Page 237 Monday, February 6, 2006 10:39 AM

C6713 DSK LED

5-238

5C6713 DSK LEDPurpose Control the user-defined light emitting diodes on the C6713 DSK

Library C6713 DSK Board Support in Embedded Target for TI C6000 DSP

Description Adding the C6713 DSK LED block to your Simulink block diagram lets you
trigger all four of the user light emitting diodes (LED) on the C6713 DSK. To
use the block, send a nonzero real scalar to the block. The C6713 DSK LED
block controls all four user LEDs located on the C6713 DSK.

When you add this block to a model, and send a real scalar to the block input,
the block sets the LED state based on the input value it receives:

• When the block receives an input value equal to 0, the specified LEDs are
turned off (disabled), 0000

• When the block receives a nonzero input value, the specified LEDs are
turned on (enabled), 0001 to 1111

To activate the block, send it an integer in the range 0 to 15. Vectors do not
work to activate LEDs; nor do complex numbers as scalars or vectors.

All LEDs maintain their state until they receive an input value that changes
the state. Enabled LEDs stay on until the block receives an input value that
turns the LEDs off; disabled LEDs stays off until turned on. Resetting the
C6713 DSK turns off all user LEDs. By default, the LEDs are turned off when
you start an application.

Dialog Box

This dialog does not have any user-selectable options.

tic6000.book Page 238 Monday, February 6, 2006 10:39 AM

C6713 DSK RESET

5-239

5C6713 DSK RESETPurpose Reset the C6713 DSK to initial conditions

Library C6713 DSK Board Support in Embedded Target for TI C6000 DSP

Description Double-clicking this block in a Simulink model window resets the C6713 DSK
that is running the executable code built from the model. When you
double-click the Reset block, the block runs the software reset function
provided by CCS that resets the processor on your C6713 DSK. Applications
running on the board stop and the signal processor returns to the initial
conditions you defined.

Before you build and download your model, add the block to the model as a
stand-alone block. You do not need to connect the block to any block in the
model. When you double-click this block in the block library it resets your
C6713 DSK. In other words, anytime you double-click a C6713 DSK RESET
block you reset your C6713 DSK.

Dialog Box This block does not have settable options and does not provide a user interface
dialog.

tic6000.book Page 239 Monday, February 6, 2006 10:39 AM

CPU Timer

5-240

5CPU TimerPurpose Select timer on board and configure periodic interrupt

Library C6000 DSP Core Support Library in Embedded Target for TI C6000 DSP

Description Use this block in a model to select the CPU timer on your board and specify
a periodic interrupt. While the list provides two timers, 0 and 1, some boards
offer either fewer or more timers. For example, the DM642 provides three
timers.

CPU timer does not have input or output ports. Adding the block to your model
serves to configure periodic interrupts in the generated code.

Dialog Box

Timer no.
Select the timer to use from the list. Be sure your target offers a timer with
the timer number you choose. Timer 0 is selected by default.

Timer period
Set the timer interrupt period in terms of CPU clock cycles. Use this block
to configure the selected CPU timer to generate a periodic interrupt.

Enter the timer period in clock cycles, either as an integer, fraction,
decimal, or a variable in your workspace. 0 is the default value.

For example, to generate a periodic timer interrupt every second when the
CPU clock operates at 720MHz, set Timer period to 720e6 clock cycles.

tic6000.book Page 240 Monday, February 6, 2006 10:39 AM

CPU Timer

5-241

See Also Hardware Interrupt, Idle Task

tic6000.book Page 241 Monday, February 6, 2006 10:39 AM

Custom C6000

5-242

5Custom C6000Purpose Set target preferences to generate code for C6000-processor-based custom
hardware targets

Library Target Preferences in Embedded Target for TI C6000 DSP for TI DSP

Description Options on the block mask let you set features of code generation for your
custom C6000 processor-based target. Adding this block to your Simulink
model provides access to the processor hardware settings you need to configure
when you generate code from Real-Time Workshop to run on the target.

Any model that you target to custom hardware must include this block or the
target preferences block that best matches your processor, such as the
C6416DSK target preferences block to target custom hardware based on the
C6416 processor. Real-Time Workshop returns an error message if a target
preferences block is not present in your model.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to set the
target preferences for the model. Simulink returns an error when your model
does not include a target preferences block or has more than one.

Among the processor and target options you specify here are the target board
information, memory mapping and layout, and how to allocate the various code
sections, such as compiler, DSP/BIOS, and custom sections.

Setting the options included in this dialog results in identifying your target to
Real-Time Workshop, Embedded Target for TI C6000 DSP, and Simulink, and
configuring the memory map for your target. Both are essential steps in the
process of targeting any board, custom or explicitly supported, like the C6711
DSK or the DM642 EVM.

Unlike most other blocks, you cannot open the block dialog for this block unless
you add the block to a model. When you try to open the block dialog, the block
attempts to connect to your target. It cannot make the connection when the
block is in the library and returns an error message.

tic6000.book Page 242 Monday, February 6, 2006 10:39 AM

Custom C6000

5-243

Generating Code from Model Subsystems
Real-Time Workshop provides the ability to generate code from a selected
subsystem in a model. To generate code for a custom C6000-based target from
a subsystem, the subsystem model must include a Custom C6000 target
preferences block.

Dialog Box

tic6000.book Page 243 Monday, February 6, 2006 10:39 AM

Custom C6000

5-244

All target preferences block dialogs provide tabbed access to panes that include
options you set for the target processor and target board:

• Board info—select the target board and processor, set the clock speed, and
identify the target.

• Memory—set the memory allocation and layout on the target processor
(memory mapping).

• Sections—determine the arrangement and location of the sections on the
target processor such as where to put the DSP/BIOS information and where
to put compiler information.

Board Info Pane
The following options appear on the Board Info pane for the C6000 Target
Preferences dialog.

Board Type
Lets you enter the type of board you are targeting with the model. You can
enter Custom to support any board based on one of the supported processors, or
enter the name of one of the supported boards, such as C6711DSK. If you are
using one of the explicitly supported boards, choose the target preferences
block for that board and this field shows the proper board type.

Device
Lets you select the type of processor on the board you select in CCS board
name. The processor type you enter determines the contents and setting for
options on the Memory and Sections panes in this dialog. If you are targeting
one of the supported boards, Device is disabled and the selected device is fixed.

CPU Clock Speed (MHz)
Shows the clock speed of the processor on your target. When you enter a value,
you are not changing the CPU clock rate, you are reporting the actual rate. If
the value you enter does not match the rate on the target, your model real-time
results may be wrong, and code profiling results will not be correct.

You must enter the actual clock rate the board uses. The rate you enter here
does not change the rate on the board. Setting CPU clock speed to the actual
board rate allows the code you generate to run correctly according to the actual
clock rate of the hardware.

When you generate code for C6000 targets from Simulink models, you may
encounter the software timer. If your model does not include ADC or DAC

tic6000.book Page 244 Monday, February 6, 2006 10:39 AM

Custom C6000

5-245

blocks, or when the processing rates in your model change (the model is
multirate), you automatically invoke the timer to handle and create interrupts
to drive your model.

Correctly generating interrupts for your model depends on the clock rate of the
CPU on your target. While the default clock rate is 100 MHz on the C6701
EVM, you can change the rate with the DIP switches on the board or from one
of the software utilities provided by TI. C6711 DSK hardware uses a fixed clock
rate of 150 MHz; you cannot change the clock rate. Other C6000 processors
allow different clock speeds.

For the timer software to calculate the interrupts correctly, Embedded Target
for TI C6000 DSP needs to know the actual clock rate of your target processor
as you configured it. CPU clock speed lets you tell the timer the rate at which
your target CPU runs. You are telling the software timer what rate to use to
match the CPU rate.

The timer uses the CPU clock rate you specify in CPU clock speed to calculate
the time for each interrupt. For example, if your model includes a sine wave
generator block running at 1 KHz feeding a signal into an FIR filter block, the
timer needs to create interrupts to generate the sine wave samples at the
proper rate. Using the clock rate you choose, 100 MHz for example, the timer
calculates the sine generator interrupt period as follows for the sine block:

• Sine block rate = 1 KHz, or 0.001 s/sample

• CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires

• 100000000/1000 = 1 Sine block interrupt per 1000000 clock ticks

So you must report the correct clock rate or the interrupts come at the wrong
times and the results are incorrect.

Simulator
Select this option when you are targeting a simulator rather than a hardware
target. You must select Simulator to target your code to a C6000 simulator.

Enable High-Speed RTDX
Select this option to tell the code generation process to enable high-speed
RTDX for this model.

CCS Board Name

tic6000.book Page 245 Monday, February 6, 2006 10:39 AM

Custom C6000

5-246

Contains a list of all the boards defined in CCS Setup. From the list of available
boards, select the one that you are targeting your code for.

CCS Processor Name
Lists the processors on the board you selected for targeting in CCS board
name. In most cases, only one name appears because the board has one
processor. In the multiprocessor case, you select the processor by name from
the list.

Memory Pane
When you target any board, you need to specify the layout of the physical
memory on your processor and board to determine how use it for your program.
For supported boards, the board-specific target preferences blocks set the
default memory map.

tic6000.book Page 246 Monday, February 6, 2006 10:39 AM

Custom C6000

5-247

The Memory pane contains memory options in three areas:

• Physical Memory—specifies the processor and board memory map

• Heap—specifies whether you use a heap and determines the size in words

• L2 Cache—enables the L2 cache (where available) and sets the size in kB

tic6000.book Page 247 Monday, February 6, 2006 10:39 AM

Custom C6000

5-248

Be aware that these options may affect the options on the Sections pane. You
can make selections here that change how you configure options on the
Sections pane.

Most of the information about memory segments and memory allocation is
available from the online help system for Code Composer Studio.

Physical Memory Options
This list shows the physical memory segments avaliable on the board and
processor. By default, target preferences blocks show the memory segments
found on the selected processor. In addition, the Memory pane on
preconfigured target preferences blocks shows the memory segments available
on the board, but off of the processor. Target preferences blocks set default
starting addresses, lengths, and contents of the default memory segments.

The default memory segments for each processor and board are different. For
example:

• Custom boards based on C670x processors provide IPRAM and IDRAM
memory segments by default.

• C6701 EVM boards provide IPRAM, IDRAM, SBSRAM, SDDRAM0, and
SDRAM1 memory segments by default

• C6711DSK boards provide SDRAM memory segments by default.

Name
When you highlight an entry on the Physical memory list, the name of the
entry appears here. To change the name of the existing memory sgment, select
it in the Physical memory list and then type the new name here.

Note You cannot change the names of default processor memory segments.

To add a new physical memory segment to the list, click Add, replace the
temporary label in Name with the one to use, and press Return. Your new
segment appears on the list.

After you add the segment, you can configure the starting address, length, and
contents for the new segment. New segments start with code and data as the
type of content that can be stored in the segment (refer to the Contents option).

tic6000.book Page 248 Monday, February 6, 2006 10:39 AM

Custom C6000

5-249

Names are case sensitive. NewSegment is not the same as newsegment or
newSegment.

Address
Address reports the starting address for the memory segment showing in
Name. Address entries are in hexadecimal format and limited only by the
board or processor memory.

When you are using a processor-specific preferences block, the starting address
shown is the default value. You can change the starting value by entering the
new value directly in Address when you select the memory segment to change.

Length
From the starting address, Length sets the length of the memory allocated to
the segment in Name. As in all memory entries, specify the length in
hexadecimal format, in minimum addressable data units (MADUs). For the
C6000 processor family, the MADU is 8 bytes, one word.

When you are using a processor-specific preferences block, the length shown is
the default value. You can change the value by entering the new value directly
in this option.

Contents
Contents details the kind of program sections that you can store in the memory
segment in Name. As the processor type for the target preferences block
changes, the kinds of information you store in listed memory segments may
change. Generally, the Contents list contains these strings:

• Code—allow code to be stored in the memory segment in Name.

• Data—allow data to be stored in the memory segment in Name.

• Code and Data—allow code and data to be stored in the memory segment in
Name. When you add a new memory segment, this is the default setting for
the contents of the new element.

You may add or use as many segments of each type as you need, within the
limits of the memory on your processor.

Add
Click Add to add a new memory segment to the target memory map. When you
click Add, a new segment name appears, for example NEWMEM1, in Name and on
the Physical memory list. In Name, change the temporary name NEWMEM1 by

tic6000.book Page 249 Monday, February 6, 2006 10:39 AM

Custom C6000

5-250

entering the new segment name. Entering the new name, or clicking Apply
updates the temporary name on the list to the name you enter.

Remove
This option lets you remove a memory segment from the memory map. Select
the segment to remove on the Physical memory list and click Remove to
delete the segment.

Create Heap
If your processor supports using a heap, as do the C6711 or C6701, for example,
selecting this option enables creating the heap, and enables the Heap size
option. Create heap is not available on processors that either do not provide
a heap or do not allow you to configure the heap.

Using this option you can create a heap in any memory segment on the
Physical memory list. Select the memory segment on the list and then select
Create heap to create a heap in the select segment. After you create the heap,
use the Heap size and Define label options to configure the heap.

The location of the heap in the memory segment is not under your control. The
only way to control the location of the heap in a segment is to make the segment
and the heap the same size. Otherwise, the compiler determines the location of
the heap in the segment.

Heap Size
After you select Create heap, this option lets you specify the size of the heap
in words. Enter the number of words in decimal format. When you enter the
heap size in decimal words, the system converts the decimal value to
hexadecimal format. You can enter the value directly in hexadecimal format as
well. Processors may support different maximum heap sizes.

Define Label
Selecting Create heap enables this option that allows you to name the heap.
Enter your label for the heap in the Heap label option.

Heap Label
Enabled by selecting Define label, you use this option to provide the label for
the heap. Any combination of characters is accepted for the label, except
reserved characters in C/C++ compilers.

Enable L2 Cache

tic6000.book Page 250 Monday, February 6, 2006 10:39 AM

Custom C6000

5-251

C621x, C671x, and C641x processors support an L2 cache memory structure
that you can configure as SRAM and partial cache. Both the data memory and
the program share this second-level memory. C620x DSPs do not support L2
cache memory and this option is not available when you choose one of the
C620x processors as your target.

If your processor supports the two-level memory scheme, this option enables
the L2 cache on the processor.

L2 Cache size
Once you enable the L2 cache, use this list to determine the size of the cache
allotted. Select the size of the cache from the list.

Sections Pane
Options on this pane let you specify where various program sections should go
in memory. Program sections are distinct from memory segments—sections
are portions of the executable code stored in contiguous memory locations.
Among the sections used generally are .text, .bss, .data, and .stack. Some
sections relate to the compiler, some to DSP/BIOS, and some can be custom
sections as you require.

For more information about program sections and objects, refer to the CCS
online help. Most of the definitions and descriptions in this section come from
CCS.

tic6000.book Page 251 Monday, February 6, 2006 10:39 AM

Custom C6000

5-252

Within this pane, you configure the allocation of sections for Compiler,
DSP/BIOS, and Custom needs.

tic6000.book Page 252 Monday, February 6, 2006 10:39 AM

Custom C6000

5-253

Here are brief definitions of the various kinds of sections in the lists. All
sections do not appear on both lists. The list on which the string appears is
shown in the table.

String Section List Description of the Section Contents

.args DSP/BIOS Argument buffers

.bss Compiler Static and global C variables in the code

.bios DSP/BIOS DSP/BIOS code if you are using DSP/BIOS
options in your program

.cinit Compiler Tables for initializing global and static
variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier and
string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global, defined as
far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS startup
initialization tables section

.hwi DSP/BIOS Dispatch code for interrupt service routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the target
program can read

.pinit Compiler Load allocation of the table of global object
constructors section.

.rtdx_text DSP/BIOS Code sections for the RTDX program
modules

.stack Compiler The global stack

tic6000.book Page 253 Monday, February 6, 2006 10:39 AM

Custom C6000

5-254

You can learn more about memory sections and objects in your Code Composer
Studio online help. Most of the definitions and descriptions in this section come
from the online help for CCS.

Compiler Sections
During program compilation, the C6000 compiler produces both uninitialized
and initialized blocks of data and code. These blocks get allocated into memory
as required by the configuration of your system. On the Compiler sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections. The initialized
sections are:

• .cinit
• .const
• .switch

• .text—created by the assembler.

These sections are uninitialized:

• .bss—created by the assembler.
• .far
• .stack

.switch Compiler Jump tables for switch statements in the
executable code

.sysdata DSP/BIOS Data about DSP/BIOS

.sysinit DSP/BIOS DSP/BIOS initialization startup code

.sysmem Compiler Dynamically allocated object in the code
containing the heap

.text Compiler Load allocation for the literal strings,
executable code, and compiler generated
constants

.trcdata DSP/BIOS TRC mask variable and its initial value
section load allocation

String Section List Description of the Section Contents

tic6000.book Page 254 Monday, February 6, 2006 10:39 AM

Custom C6000

5-255

• .sysmem

Other sections appear on the list as well:

• .data—created by the assembler. The C/C++ compiler does not use this
section.

• .cio
• .pinit

When you highlight a section on the list, Description shows a brief description
of the section. Also, Placement shows you where the section is presently
allocated in memory.

Description
Provides a brief explanation of the contents of the selected entry on the
Compiler sections list.

Placement
Shows you where the selected Compiler sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments as defined in
the phusical memory map on the Memory pane. Select one of the listed
memory segments to allocate the highlighted compiler section to the segment.

DSP/BIOS Sections
During program compilation, DSP/BIOS produces both uninitialized and
initialized blocks of data and code. These blocks get allocated into memory as
required by the configuration of your system. On the DSP/BIOS sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections.

Description
Provides a brief explanation of the contents of the selected DSP/BIOS sections
list entry

Placement
Shows where the selected DSP/BIOS sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments available on
C6000 processors, and changes based on the processor you are using.

tic6000.book Page 255 Monday, February 6, 2006 10:39 AM

Custom C6000

5-256

DSP/BIOS Object Placement
Distinct from the entries on the DSP/BIOS sections list, DSP/BIOS objects like
STS or LOG, if your project uses them, get placed in the memory segment you
select from the DSP/BIOS Object Placement list. All DSP/BIOS objects use
the same memory segment. You cannot select the location for individual
objects.

Custom Sections
When your program uses code or data sections that are not included in either
the Compiler sections or DSP/BIOS sections lists, you add the new sections
to this list. Initially, the Custom sections list contains no fixed entries, just a
placeholder for a section for you to define.

Name
You enter the name for your new section here. To add a new section, click Add.
Then replace the temporary name with the name to use. Although the
temporary name includes a period at the beginning you do not need to include
the period in your new name. Names are case sensitive. NewSection is not the
same as newsection, or newSection.

Placement
With your new section added to the Name list, select the memory segment to
which to add your new section. Within the restrictions imposed by the
hardware and compiler, you can select any segment that appears on the list.

Add
Clicking Add lets you configure a new entry to the list of custom sections. When
you click Add, the block provides a new temporary name in Name. Enter the
new section name to add the section to the Custom sections list. After typing
the new name, click Apply to add the new section to the list. Or click OK to add
the section to the list and close the dialog.

Remove
To remove a section from the Custom sections list, select the section to
remove and click Remove. The selected section disappears from the list.

DSP/BIOS Pane
Options on this pane let you specify how to configure tasking features of
DSP/BIOS.

tic6000.book Page 256 Monday, February 6, 2006 10:39 AM

Custom C6000

5-257

This pane provides options the asynchronous task scheduler uses when you
select the Incorporate DSP/BIOS option in the configuration set for your
model. By default, Incorporate DSP/BIOS is selected and the Embedded
Target for TI C6000 DSP creates separate DSP/BIOS tasks for each sample
time in your Simulink model.

DSP/BIOS tasking blocks provide parameters on their block dialogs so you can
specify the DSP/BIOS stack size and stack segment (where the stack is in
memory) for asynchronous tasks created by the DSP/BIOS Task and Triggered
Task blocks.

The code generation process uses the options on this pane to configure TSK
entries in the TSK Task Manager in CCS when it creates DSP/BIOS tasks.

When you choose not to use DSP/BIOS in your project, by clearing the
Incorporate DSP/BIOS the configuration set for your model, you disable the
options in this pane and Embedded Target for TI C6000 DSP uses an
interrupt-based scheduler. It does not create or use DSP/BIOS tasks.

For more information about tasks, refer to the Code Composer Studio online
help. Most of the definitions and descriptions in this section come from CCS.

tic6000.book Page 257 Monday, February 6, 2006 10:39 AM

Custom C6000

5-258

Within this pane, you configure the options for DSP/BIOS tasks, such as the
task manager and scheduler configuration. Note that the Sections pane
includes DSP/BIOS configuration options as well. The options specify the stack
use and locations on the stack for static and dynamic tasks.

Default stack size (bytes)
DSP/BIOS uses a stack to save and restore variables and CPU context
during thread preemption for task threads. This option sets the size of the

tic6000.book Page 258 Monday, February 6, 2006 10:39 AM

Custom C6000

5-259

DSP/BIOS stack in bytes allocated for each task. 4096 bytes is the default
value. You can set any size up to the limits for the processor. Set the stack
size so that tasks do not use more memory than you allocate. While any
task can use more memory than the stack includes, this might cause the
task to write into other memory or data areas, possibly causing
unpredictable behavior.

Stack segment for static tasks
Use this option to specify where to allocate the stack for static tasks. Static
tasks are created whether or not they are needed for operation, compared
to dynamic tasks that the system creates as needed. Tasks that your
program uses often might be good candidates for static tasks. Infrequently
used tasks usually work best as dynamic tasks.

The list offers IDRAM for locating the stack in memory. The Memory pane
provide more options for the physical memory on the processor.

Stack segment for dynamic tasks
Like static tasks, dynamic tasks use a stack as well. Setting this option
specifies where to locate the stack for dynamic tasks. In this case,
MEM_NULL is the only valid stack location in memory.

tic6000.book Page 259 Monday, February 6, 2006 10:39 AM

DM642EVM

5-260

5DM642EVMPurpose Set target preferences to generate code for the DM642 Evaluation Module

Library Target Preferences in Embedded Target for TI C6000 DSP

Description Options on the block mask let you set features of code generation for your
DM642 Evaluation Module target. Adding this block to your Simulink model
provides access to the processor hardware settings to configure when you
generate code from Real-Time Workshop to run on the target.

Any model that you target to the DM642 evaluation module must include this
block, or the Custom C6000 target preferences block. Real-Time Workshop
returns an error message if a target preferences block is not present in your
model.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to set the
target preferences for the model.

Among the processor and target options you specify here are the target board
information, memory mapping and layout, and how to allocate the various code
sections, such as compiler, DSP/BIOS, and custom sections.

Setting the options included in this dialog results in identifying your target to
Real-Time Workshop, Embedded Target for TI C6000 DSP, and Simulink, and
configuring the memory map for your target. Both are essential steps in the
process of targeting any board, custom or explicitly supported like the C6711
DSK or the DM642 EVM.

Unlike most other blocks, you cannot open the block dialog for this block unless
you add the block to a model. When you try to open the block dialog, the block
attempts to connect to your target. It cannot make the connection when the
block is in the library and returns an error message.

Generating Code from Model Subsystems
Real-Time Workshop provides the ability to generate code from a selected
subsystem in a model. To generate code for the DM642 EVM from a subsystem,
the subsystem model must include a DM642EVM target preferences block.

tic6000.book Page 260 Monday, February 6, 2006 10:39 AM

DM642EVM

5-261

Dialog Box

All target preferences block dialogs provide tabbed access to panes that include
options you set for the target processor and target board:

• Board info—select the target board and processor, set the clock speed, and
identify the target.

• Memory—set the memory allocation and layout on the target processor
(memory mapping).

tic6000.book Page 261 Monday, February 6, 2006 10:39 AM

DM642EVM

5-262

• Sections—determine the arrangement and location of the sections on the
target processor such as where to put the DSP/BIOS information and where
to put compiler information.

Board Info Pane
The following options appear on the Board Info pane for the C6000 Target
Preferences dialog.

Board Type
Lets you enter the type of board you are targeting with the model. You can
enter Custom to support any board based on one of the supported processors, or
enter the name of one of the supported boards, such as C6711DSK. By default,
the DM642EVM block specifies the DM642EVM for the board type.

Device
Lets you select the type of processor on the board you select in CCS board
name. The processor type you enter determines the contents and setting for
options on the Memory and Sections panes in this dialog. If you are targeting
one of the supported boards, Device is disabled and the selected device is fixed.

CPU Clock Speed (MHz)
Shows the clock speed of the processor on your target. When you enter a value,
you are not changing the CPU clock rate, you are reporting the actual rate. If
the value you enter does not match the rate on the target, your model real-time
results may be wrong, and code profiling results will not be correct.

You must enter the actual clock rate the board uses. The rate you enter here
does not change the rate on the board. Setting CPU clock speed to the actual
board rate allows the code you generate to run correctly according to the actual
clock rate of the hardware.

When you generate code for C6000 targets from Simulink models, you may
encounter the software timer. If your model does not include ADC or DAC
blocks, or when the processing rates in your model change (the model is
multirate), you automatically invoke the timer to handle and create interrupts
to drive your model.

Correctly generating interrupts for your model depends on the clock rate of the
CPU on your target. While the default clock rate is 100 MHz on the C6701
EVM, you can change the rate with the DIP switches on the board or from one
of the software utilities provided by TI. C6711 DSK hardware uses a fixed clock

tic6000.book Page 262 Monday, February 6, 2006 10:39 AM

DM642EVM

5-263

rate of 150 MHz; you cannot change the clock rate. Other C6000 processors
allow different clock speeds.

For the timer software to calculate the interrupts correctly, Embedded Target
for TI C6000 DSP needs to know the actual clock rate of your target processor
as you configured it. CPU clock speed lets you tell the timer the rate at which
your target CPU runs. You are telling the software timer what rate to use to
match the CPU rate.

The timer uses the CPU clock rate you specify in CPU clock speed to calculate
the time for each interrupt. For example, if your model includes a sine wave
generator block running at 1 KHz feeding a signal into an FIR filter block, the
timer needs to create interrupts to generate the sine wave samples at the
proper rate. Using the clock rate you choose, 100 MHz for example, the timer
calculates the sine generator interrupt period as follows for the sine block:

• Sine block rate = 1 KHz, or 0.001 s/sample

• CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires

• 100000000/1000 = 1 Sine block interrupt per 1000000 clock ticks

So you must report the correct clock rate or the interrupts come at the wrong
times and the results are incorrect.

Simulator
Select this option when you are targeting a simulator rather than a hardware
target. You must select Simulator to target your code to a C6000 simulator.

Enable High-Speed RTDX
Select this option to tell the code generation process to enable high-speed
RTDX for this model.

CCS Board Name
Contains a list of all the boards defined in CCS Setup. From the list of available
boards, select the one that you are targeting your code for.

CCS Processor Name
Lists the processors on the board you selected for targeting in CCS board
name. In most cases, only one name appears because the board has one
processor. In the multiprocessor case, you select the processor by name from
the list.

tic6000.book Page 263 Monday, February 6, 2006 10:39 AM

DM642EVM

5-264

Memory Pane
When you target any board, you need to specify the layout of the physical
memory on your processor and board to determine how use it for your program.
For supported boards, the board-specific target preferences blocks set the
default memory map.

The Memory pane contains memory options in three areas:

• Physical Memory—specifies the processor and board memory map

• Heap—specifies whether you use a heap and determines the size in words

tic6000.book Page 264 Monday, February 6, 2006 10:39 AM

DM642EVM

5-265

• L2 Cache—enables the L2 cache (where available) and sets the size in kB

Be aware that these options may affect the options on the Sections pane. You
can make selections here that change how you configure options on the
Sections pane.

Most of the information about memory segments and memory allocation is
available from the online help system for Code Composer Studio.

Physical Memory Options
This list shows the physical memory segments avaliable on the board and
processor. By default, target preferences blocks show the memory segments
found on the selected processor. In addition, the Memory pane on
preconfigured target preferences blocks shows the memory segments available
on the board, but off of the processor. Target preferences blocks set default
starting addresses, lengths, and contents of the default memory segments.
DM642EVM boards provide ISRAM and SDRAM memory segments by default.

Name
When you highlight an entry on the Physical memory list, the name of the
entry appears here. To change the name of the existing memory sgment, select
it in the Physical memory list and then type the new name here.

Note You cannot change the names of default processor memory segments.

To add a new physical memory segment to the list, click Add, replace the
temporary label in Name with the one to use, and press Return. Your new
segment appears on the list.

After you add the segment, you can configure the starting address, length, and
contents for the new segment. New segments start with code and data as the
type of content that can be stored in the segment (refer to the Contents option).

Names are case sensitive. NewSegment is not the same as newsegment or
newSegment.

Address
Address reports the starting address for the memory segment showing in
Name. Address entries are in hexadecimal format and limited only by the
board or processor memory.

tic6000.book Page 265 Monday, February 6, 2006 10:39 AM

DM642EVM

5-266

When you are using a processor-specific preferences block, the starting address
shown is the default value. You can change the starting value by entering the
new value directly in Address when you select the memory segment to change.

Length
From the starting address, Length sets the length of the memory allocated to
the segment in Name. As in all memory entries, specify the length in
hexadecimal format, in minimum addressable data units (MADUs). For the
C6000 processor family, the MADU is 8 bytes, one word.

When you are using a processor-specific preferences block, the length shown is
the default value. You can change the value by entering the new value directly
in this option.

Contents
Contents details the kind of program sections that you can store in the memory
segment in Name. As the processor type for the target preferences block
changes, the kinds of information you store in listed memory segments may
change. Generally, the Contents list contains these strings:

• Code—allow code to be stored in the memory segment in Name.

• Data—allow data to be stored in the memory segment in Name.

• Code and Data—allow code and data to be stored in the memory segment in
Name. When you add a new memory segment, this is the default setting for
the contents of the new element.

You may add or use as many segments of each type as you need, within the
limits of the memory on your processor.

Add
Click Add to add a new memory segment to the target memory map. When you
click Add, a new segment name appears, for example NEWMEM1, in Name and on
the Physical memory list. In Name, change the temporary name NEWMEM1 by
entering the new segment name. Entering the new name, or clicking Apply
updates the temporary name on the list to the name you enter.

Remove
This option lets you remove a memory segment from the memory map. Select
the segment to remove on the Physical memory list and click Remove to
delete the segment.

tic6000.book Page 266 Monday, February 6, 2006 10:39 AM

DM642EVM

5-267

Create Heap
Selecting this option enables creating the heap, and enables the Heap size
option.

Using this option you can create a heap in any memory segment on the
Physical memory list. Select the memory segment on the list and then select
Create heap to create a heap in the select segment. After you create the heap,
use the Heap size and Define label options to configure the heap.

The location of the heap in the memory segment is not under your control. The
only way to control the location of the heap in a segment is to make the segment
and the heap the same size. Otherwise, the compiler determines the location of
the heap in the segment.

Heap Size
After you select Create heap, this option lets you specify the size of the heap
in words. Enter the number of words in decimal format. When you enter the
heap size in decimal words, the system converts the decimal value to
hexadecimal format. You can enter the value directly in hexadecimal format as
well. Processors may support different maximum heap sizes.

Define Label
Selecting Create heap enables this option that allows you to name the heap.
Enter your label for the heap in the Heap label option.

Heap Label
Enabled by selecting Define label, you use this option to provide the label for
the heap. Any combination of characters is accepted for the label, except
reserved characters in C/C++ compilers.

Enable L2 Cache
DM642 processors support an L2 cache memory structure that you can
configure as ISRAM and partial cache.

L2 Cache size
Once you enable the L2 cache, use this list to determine the size of the cache
allotted. Select the size of the cache from the list.

Sections Pane
Options on this pane let you specify where various program sections should go
in memory. Program sections are distinct from memory segments—sections

tic6000.book Page 267 Monday, February 6, 2006 10:39 AM

DM642EVM

5-268

are portions of the executable code stored in contiguous memory locations.
Among the sections used generally are .text, .bss, .data, and .stack. Some
sections relate to the compiler, some to DSP/BIOS, and some can be custom
sections as you require.

For more information about program sections and objects, refer to the CCS
online help. Most of the definitions and descriptions in this section come from
CCS.

Within this pane, you configure the allocation of sections for Compiler,
DSP/BIOS, and Custom needs.

tic6000.book Page 268 Monday, February 6, 2006 10:39 AM

DM642EVM

5-269

Here are brief definitions of the various kinds of sections in the lists. All
sections do not appear on both lists. The list on which the string appears is
shown in the table.

String Section List Description of the Section Contents

.args DSP/BIOS Argument buffers

.bss Compiler Static and global C variables in the code

.bios DSP/BIOS DSP/BIOS code if you are using DSP/BIOS
options in your program

.cinit Compiler Tables for initializing global and static
variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier and
string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global, defined as
far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS startup
initialization tables section

.hwi DSP/BIOS Dispatch code for interrupt service routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the target
program can read

.pinit Compiler Load allocation of the table of global object
constructors section.

.rtdx_text DSP/BIOS Code sections for the RTDX program
modules

.stack Compiler The global stack

tic6000.book Page 269 Monday, February 6, 2006 10:39 AM

DM642EVM

5-270

You can learn more about memory sections and objects in your Code Composer
Studio online help. Most of the definitions and descriptions in this section come
from the online help for CCS.

Compiler Sections
During program compilation, the C6000 compiler produces both uninitialized
and initialized blocks of data and code. These blocks get allocated into memory
as required by the configuration of your system. On the Compiler sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections. The initialized
sections are:

• .cinit
• .const
• .switch

• .text—created by the assembler.

These sections are uninitialized:

• .bss—created by the assembler.
• .far
• .stack

.switch Compiler Jump tables for switch statements in the
executable code

.sysdata DSP/BIOS Data about DSP/BIOS

.sysinit DSP/BIOS DSP/BIOS initialization startup code

.sysmem Compiler Dynamically allocated object in the code
containing the heap

.text Compiler Load allocation for the literal strings,
executable code, and compiler generated
constants

.trcdata DSP/BIOS TRC mask variable and its initial value
section load allocation

String Section List Description of the Section Contents

tic6000.book Page 270 Monday, February 6, 2006 10:39 AM

DM642EVM

5-271

• .sysmem

Other sections appear on the list as well:

• .data—created by the assembler. The C/C++ compiler does not use this
section.

• .cio
• .pinit

When you highlight a section on the list, Description shows a brief description
of the section. Also, Placement shows you where the section is presently
allocated in memory.

Description
Provides a brief explanation of the contents of the selected entry on the
Compiler sections list.

Placement
Shows you where the selected Compiler sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains ISRAM and SDRAM when you use
this block.

DSP/BIOS Sections
During program compilation, DSP/BIOS produces both uninitialized and
initialized blocks of data and code. These blocks get allocated into memory as
required by the configuration of your system. On the DSP/BIOS sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections.

Description
Provides a brief explanation of the contents of the selected DSP/BIOS sections
list entry

Placement
Shows where the selected DSP/BIOS sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments available on
C6000 processors, and changes based on the processor you are using.

DSP/BIOS Object Placement
Distinct from the entries on the DSP/BIOS sections list, DSP/BIOS objects like
STS or LOG, if your project uses them, get placed in the memory segment you

tic6000.book Page 271 Monday, February 6, 2006 10:39 AM

DM642EVM

5-272

select from the DSP/BIOS Object Placement list. All DSP/BIOS objects use
the same memory segment. You cannot select the location for individual
objects.

Custom Sections
When your program uses code or data sections that are not included in either
the Compiler sections or DSP/BIOS sections lists, you add the new sections
to this list. Initially, the Custom sections list contains no fixed entries, just a
placeholder for a section for you to define.

Name
You enter the name for your new section here. To add a new section, click Add.
Then replace the temporary name with the name to use. Although the
temporary name includes a period at the beginning you do not need to include
the period in your new name. Names are case sensitive. NewSection is not the
same as newsection, or newSection.

Placement
With your new section added to the Name list, select the memory segment to
which to add your new section. Within the restrictions imposed by the
hardware and compiler, you can select any segment that appears on the list.

Add
Clicking Add lets you configure a new entry to the list of custom sections. When
you click Add, the block provides a new temporary name in Name. Enter the
new section name to add the section to the Custom sections list. After typing
the new name, click Apply to add the new section to the list. Or click OK to add
the section to the list and close the dialog.

Remove
To remove a section from the Custom sections list, select the section to
remove and click Remove. The selected section disappears from the list.

DSP/BIOS Pane
Options on this pane let you specify how to configure tasking features of
DSP/BIOS.

This pane provides options the asynchronous task scheduler uses when you
select the Incorporate DSP/BIOS option in the configuration set for your
model. By default, Incorporate DSP/BIOS is selected and the Embedded

tic6000.book Page 272 Monday, February 6, 2006 10:39 AM

DM642EVM

5-273

Target for TI C6000 DSP creates separate DSP/BIOS tasks for each sample
time in your Simulink model.

DSP/BIOS tasking blocks provide parameters on their block dialogs so you can
specify the DSP/BIOS stack size and stack segment (where the stack is in
memory) for asynchronous tasks created by the DSP/BIOS Task and Triggered
Task blocks.

The code generation process uses the options on this pane to configure TSK
entries in the TSK Task Manager in CCS when it creates DSP/BIOS tasks.

When you choose not to use DSP/BIOS in your project, by clearing the
Incorporate DSP/BIOS the configuration set for your model, you disable the
options in this pane and Embedded Target for TI C6000 DSP uses an
interrupt-based scheduler. It does not create or use DSP/BIOS tasks.

For more information about tasks, refer to the Code Composer Studio online
help. Most of the definitions and descriptions in this section come from CCS.

tic6000.book Page 273 Monday, February 6, 2006 10:39 AM

DM642EVM

5-274

Within this pane, you configure the options for DSP/BIOS tasks, such as the
task manager and scheduler configuration. Note that the Sections pane
includes DSP/BIOS configuration options as well. The options specify the stack
use and locations on the stack for static and dynamic tasks.

Default stack size (bytes)
DSP/BIOS uses a stack to save and restore variables and CPU context
during thread preemption for task threads. This option sets the size of the

tic6000.book Page 274 Monday, February 6, 2006 10:39 AM

DM642EVM

5-275

DSP/BIOS stack in bytes allocated for each task. 4096 bytes is the default
value. You can set any size up to the limits for the processor. Set the stack
size so that tasks do not use more memory than you allocate. While any
task can use more memory than the stack includes, this might cause the
task to write into other memory or data areas, possibly causing
unpredictable behavior.

Stack segment for static tasks
Use this option to specify where to allocate the stack for static tasks. Static
tasks are created whether or not they are needed for operation, compared
to dynamic tasks that the system creates as needed. Tasks that your
program uses often might be good candidates for static tasks. Infrequently
used tasks usually work best as dynamic tasks.

The list offers options SDRAM and ISRAM for locating the stack in memory,
with SDRAM as the default section. The Memory pane provide more options
for the physical memory on the processor.

Stack segment for dynamic tasks
Like static tasks, dynamic tasks use a stack as well. Setting this option
specifies where to locate the stack for dynamic tasks. In this case, SDRAM is
the only valid stack location in memory.

tic6000.book Page 275 Monday, February 6, 2006 10:39 AM

DM642 EVM Audio ADC

5-276

5DM642 EVM Audio ADCPurpose Configure audio codec and peripherals on the DM642 Evaluation Module

Library DM642 EVM Board Support Library in Embedded Target for TI C6000 DSP

Description Use the DM642 EVM ADC (analog-to-digital converter) block to capture and
digitize analog audio signals from external sources, such as signal generators,
frequency generators, or audio devices. Placing a DM642 EVM ADC block in
your Simulink block diagram lets you use the audio coder-decoder module
(codec) on the DM642 EVM to convert an analog input signal to a digital signal
for the digital signal processor.

Most of the configuration options in the block affect the codec. However, the
Output data type, Samples per frame and Scaling options are related to the
model you are using in Simulink, the signal processor on the board, or direct
memory access (DMA) on the board. In the following table, you find each option
listed with the DM642 EVM hardware affected.

You can select one of two input sources from the ADC source list:

• Line In—the codec accepts input from the line in connector (LINE IN) on the
board’s mounting bracket.

• Mic in—the codec accepts input from the microphone connector (MIC IN) on
the board mounting bracket.

Use the Stereo check box to indicate whether the audio input is monaural or
stereo. Clear the check box to choose monaural audio input. Select the check
box to enable stereo audio input. Monaural (mono) input is left channel only,

Option Affected Hardware

ADC Source Codec

Mic Codec

Output data type TMS320DM642 digital signal processor

Sample rate (Hz) Codec

Samples per frame Direct memory access functions

Stereo Codec

tic6000.book Page 276 Monday, February 6, 2006 10:39 AM

DM642 EVM Audio ADC

5-277

but the output sends left channel content to both the left and right output
channels; stereo uses the left and right channels.

You must set the sample rate for the block. From Sample rate (Hz), select the
sample rate for your model. Sample rate (Hz) specifies the number of times
each second that the codec samples the input signal. Sample rates range from
8 kHz to 96 kHz, in preset rates. You must select from the list; you cannot enter
a sample rate that is not on the list.

Dialog Box

ADC source
The input source to the codec. Line In is the default.

+20 dB Mic gain boost
Boosts the input signal by +20dB when ADC source is Mic. Gain is applied
before analog-to-digital conversion.

Stereo
The number of channels input to the A/D converter. Clearing this option
selects the left channel; selecting this option selects both left and right

tic6000.book Page 277 Monday, February 6, 2006 10:39 AM

DM642 EVM Audio ADC

5-278

input channels. To configure the DM642 EVM board for monaural
operation, clear the Stereo check box. When you first open the dialog,
Stereo is selected. The default is stereo operation.

Sample rate (Hz)
Sampling rate of the A/D converter. Available sample rates are set by the
codec. Default rate is 8 kHz. Options range up to 96 kHz. Select the sample
rate from the list.

Samples per frame
Creates frame-based outputs from sample-based inputs. This parameter
specifies the number of samples of the signal buffered internally by the
block before it sends the digitized signals, as a frame vector, to the next
block in the model. 64 samples per frame is the default setting. Notice that
the frame rate depends on the sample rate and frame size. For example, if
your input is 32 samples per second, and you select 64 samples per frame,
the frame rate is one frame every two seconds. The throughput remains the
same at 32 samples per second.

Inherit sample time
Selects whether the block inherits the sample time from the model base
rate/Simulink base rate as determined in the Solver options in
Configuration Parameters. Selecting Inherit sample time directs the
block to use the specified rate in model configuration. You must select this
option to use the block in a function subsystem with the asynchronous
scheduler.

See Also DM642 EVM Audio DAC

tic6000.book Page 278 Monday, February 6, 2006 10:39 AM

DM642 EVM Audio DAC

5-279

5DM642 EVM Audio DACPurpose Configure the codec to convert digital audio input to analog audio output

Library DM642 EVM Board Support Library in Embedded Target for TI C6000 DSP

Description Adding the DM642 EVM DAC (digital-to-analog converter) block to your
Simulink model provides the means to output an analog signal to the LINE
OUT connection on the DM642 EVM mounting bracket. When you add the
DM642 EVM DAC block, the digital signal received by the codec is converted
to an analog signal. After converting the digital signal to analog form
(digital-to-analog conversion), the codec sends the signal to the output audio
jack.

While converting the digital signal to an analog signal, the codec rounds
floating point data to the nearest integer, thus rounding 0.51 up to 1.0 or 4.49
down to 4.0.

Setting the sample rate configures the codec sampling rate for the analog
output data stream. The rates range from 8000 Hz, similar to plain old
telephone service quality, to 48 kHz (CD quality audio) to 96 kHz.

Dialog Box

Sample rate (Hz)
Sampling rate of the D/A converter. Available output sample rates are set
by the codec. Default rate is 8000 Hz (8 kHz) and the maximum rate is
96000 Hz (96 kHz). Choose the appropriate rate from the list.

See Also DM642 EVM Audio ADC

tic6000.book Page 279 Monday, February 6, 2006 10:39 AM

DM642 EVM FPGA GPIO Read

5-280

5DM642 EVM FPGA GPIO ReadPurpose Read DM642 EVM FPGA GPIO registers

Library DM642 EVM Board Support Library in Embedded Target for TI C6000 DSP

Description Added to your model, this block reads logical values from the GPIO registers
you select in the dialog and sends the data out to downstream blocks as an
unsigned 8-bit word.

The DM642 EVM offers eight general purpose I/O registers that you can read
from and write to for your needs. Each I/O pin represents either a logical 0 or 1
depending on the signal at the pin.

An important note—you cannot read and write to the same I/O registers with
the FPGA GPIO Read and FPGA GPIO Write blocks. If you read register 1 with
the read block you cannot write to register 1 with the write block. This applies
to all eight registers.

Dialog Box

tic6000.book Page 280 Monday, February 6, 2006 10:39 AM

DM642 EVM FPGA GPIO Read

5-281

bit 0 to bit 7
Each bit represents the logical value at one GPIO register. Bit 0 is register 0,
bit7 is register 7. Select the bits that represent the registers to read. Note that
the read and write functions cannot share the same registers. If you select a
register to read, you cannot write to that register.

Sample time
Time in seconds between consecutive inputs to the registers. Enter any real
positive value or a variable name from your workspace.

See Also DM642 EVM FPGA GPIO Write

tic6000.book Page 281 Monday, February 6, 2006 10:39 AM

DM642 EVM FPGA GPIO Write

5-282

5DM642 EVM FPGA GPIO WritePurpose Write to DM642 EVM GPIO registers

Library DM642 EVM Board Support Library in Embedded Target for TI C6000 DSP

Description Added to your model, this block writes logical values to the GPIO registers you
select in the dialog, reading the data from an upstream block as an unsigned
8-bit word.

The DM642 EVM offers eight general purpose I/O registers that you can read
from and write to for your needs. Each I/O pin represents either a logical 0 or 1
depending on the signal at the pin.

An important note—you cannot read and write to the same I/O registers with
the FPGA GPIO Read and FPGA GPIO Write blocks. If you write register 1
with the write block you cannot read from register 1 with the read block. This
applies to all eight registers.

Dialog Box

bit 0 to bit 7

tic6000.book Page 282 Monday, February 6, 2006 10:39 AM

DM642 EVM FPGA GPIO Write

5-283

Each bit represents the logical value at one GPIO register. Bit 0 is register 0,
bit7 is register 7. Select the bits that represent the registers to write. Note that
the read and write functions cannot share the same registers. When you select
a register to write to, you cannot read that register.

Sample time
Time in seconds between consecutive inputs to the registers. Enter any real
positive value or a variable name from your workspace.

See Also DM642 EVM FPGA GPIO Read

tic6000.book Page 283 Monday, February 6, 2006 10:39 AM

DM642 EVM IP Config

5-284

5DM642 EVM IP ConfigPurpose Configure Internet Protocol (IP) parameters for DM642 EVM

Library DM642 EVM Board Support Library in Embedded Target for TI C6000 DSP

Description Adding this block to your model provides options to configure the IP
parameters for your DM642 EVM board. By setting the options for the block,
you set the address and name for your board. If you have a dynamic host
configuration protocol (DHCP) server available, you can choose to let the server
provide an IP address for your board. Dynamic IP addresses can be useful but
unreliable—they can change. If your model needs a static address that you can
rely on, use the block options to define the address you require and clear the
Use DHCP to allocate an IP address for DM642 EVM (requires DHCP
server) option. Clearing this option enables all of the manual IP address
configuration options. By default, the block uses dynamic addressing, getting
the address from the local server.

Note To use the UDP Send and Receive blocks, you must include this block to
configure the Ethernet parameters for the target networking capability. This
block sets up the IP drivers for use and must be in the model for any
network-related processing.

Whether you choose to use dynamic addressing, you must set the Host name
and Use CPU interrupt for Ethernet driver (4-13) options.

Detailed discussion of IP and other protocols is beyond the scope of this
documention. For more information about the Internet protocol, refer to any
reference on networking or TCP/IP.

tic6000.book Page 284 Monday, February 6, 2006 10:39 AM

DM642 EVM IP Config

5-285

Dialog Box

Use DHCP to allocate an IP address for DM642 EVM (requires a DHCP
server)

Selecting this options configures the board to get an IP address from the
local DHCP server on the network. If you select this and you do not have
a DHCP server, the generated code does not run correctly. Clearing this
enables all of the following IP configuration options for the block to let you
define your own IP address manually.

Use the following IP address for DM642 EVM
Specify an IP address for the DM642 EVM. This is the address that others
use to communicate with the evaluation module over IP. Use the full

tic6000.book Page 285 Monday, February 6, 2006 10:39 AM

DM642 EVM IP Config

5-286

xxx.xxx.xxx.xxx format. Entering 255.255.255.255 configures the board for
limited broadcast.

Subnet mask
Define the subnet mask address, entering the full subnet mask as
xxx.xxx.xxx.xxx. Subnet masks define how many bits of the IP address are
used to indentify the network.

By using 1s in all the address bits that identify the network, the subnet
mask shows you which bits define the network and which are internal to
the network. In the figure, the subnet mask 255.255.255.0 indicates that
the first three octets in the address define the network.

Gateway IP
Enter the address of the gateway server or router that maintains a more
complete listing of the surrounding networks. Messages that are destined
for machines outside the local network are sent to the gateway address for
address resolution. You are allowed to enter only one gateway address.

Domain name server IP
Enter the address of the server for the domain in which the target is
a member.

Domain name
Enter the name for the domain. Without the correct domain name, the
target cannot communicate on the network within the domain.

Host name (less than 64 characters)
Enter the name of the host (the DM642). Usually this is the NetBIOS name
for the machine if it exists.

Use the following CPU interrupt for Ethernet driver (4-13)
The Ethernet driver on the DM642 can respond to any one of the CPU
interrupts from 4 to 13. Enter one valid CPU interrupt for the driver to
react to. 13 is the default interrupt, with the lowest available priority in the
available interrupt hierarchy.

Enable status print-outs to Stdout
Select this option to direct the block to send IP status information to the
standard output device.

tic6000.book Page 286 Monday, February 6, 2006 10:39 AM

DM642 EVM Video ADC

5-287

5DM642 EVM Video ADCPurpose Configure video capture capability (video decoders) to capture analog video
input on the DM642 EVM

Library DM642 EVM Board Support Library in Embedded Target for TI C6000 DSP

Description Adding this block to a model enables code generated from your model to
perform the following tasks:

1 Capture analog video data from the video input ports on the DM642 EVM.

2 Convert the input to a format and mode you define in the block.

3 Output the converted digital video for further downstream processing.

Adding two of these blocks to a model lets you capture two separate video data
streams and prepare them for display simultaneously, such as in
picture-in-picture mode.

The block captures and buffers one frame (two fields for NTSC standard) of
analog input video from the input ports, converts the buffered video to the
specified format, and then outputs the converted video frame as 8-bit unsigned
integer data for further processing.

Input to the DM642 EVM must be analog National Television Standards
Committee (NTSC) video format. The block captures and processes data in
frames, not fields.

To configure the format for the output video, the block offers output format
options that control how the block handles color data. The block also offers a
sample time option to let you set the frame rate for video output from the block.

Note This block does not provide output video for display. Use the DM642
EVM Video DAC to generate video data to output to the board video output
connectors.

When you add this block to a Simulink model, it has no affect in your
simulation—it outputs a string of zeros. Generating code from a model that
includes this block produces the code needed for capturing data on your
evaluation module by adding

tic6000.book Page 287 Monday, February 6, 2006 10:39 AM

DM642 EVM Video ADC

5-288

• Video device configuration code for the chosen mode

• Code used to copy the run-time buffer

To use video in a Simulink model, use one of the available video source blocks
to introduce video data to your model.

Options for the block let you configure the digital video format and video mode
for the data output by the block.

NTSC TV systems use interlaced scanning to create TV frames from fields. The
even and odd TV lines are separated into even and odd fields that combine to
make a complete TV frame image. For output, the block always provides
complete frames, consisting of two fields, which are available at any instant.
When the sample time you specify for the block is different from the NTSC
frame rate of 30Hz, you may encounter visible anomalies in the video stream
from the block.

Notes About Converting NTSC Video Input From YCbCr to RGB24
When you choose to convert your NTSC YCbCr-defined video input to RGB24
(8:8:8 RGB) for output from the block, the block performs an intermediate
conversion step that follows a standard process for conversion (as described by
Graphical Device Interface (GDI) color space conversions documentation from
the International Color Consortium (ICC)).

First, the block converts your YCbCr input signal to 5:6:5 RGB format where
the red and blue channels of the source use a 5-bit representation and the green
channel uses 6 bits.

Now the block converts your 5:6:5 RGB to 8:8:8 RGB using the following
conventions:

1 For the red and blue 5-bit channels, it copies the three most significant bits
(MSB) from the 5-bit source word and append them to the lower order end
of the target word.

2 For the green 6-bit channel, it copies the two MSBs from the green source
word and append them to the lower order end of the target green word.

The results is to output three RGB channels—red, green, and blue—each with
8-bit words.

tic6000.book Page 288 Monday, February 6, 2006 10:39 AM

DM642 EVM Video ADC

5-289

For example, to convert hexadecimal values by this algorithm, 5:5:5 RGB data
of (0x19, 0x33, 0x1A) becomes (0xCE, 0xCF, 0xD6) of 8:8:8 RGB output.

To do the conversion in the binary case for 5:5:5 RGB data:

1 blue data 1 1101 converts to 11101111

2 for the green channel, conversion takes 11 0011 to 1100 1111

3 red data 1 0101 becomes 1010 1101 (same algorithm as blue data)

To maximize the speed of the RGB conversion, the Video ADC block provides
color space conversion using a routine hand-written in assembly language and
optimized for the DM64x processor core. Using the optimized color space
conversion code replaces the Color Space Conversion block available from the
Video and Image Processing (VIP) Blockset. While you can use any compatible
VIP blockset block with the DM642, this particular color space conversion
operation is handled better by the conversion code included in the ADC block.

Dialog Box

tic6000.book Page 289 Monday, February 6, 2006 10:39 AM

DM642 EVM Video ADC

5-290

Decoder type
Configures the block options to support either the TVP5146 Decoder on the
DM642 EVM or the SAA7115 Decoder, depending on the model of your
board. Choose one option from the list—TVP5146 or SAA7115. When you
select SAA7115 for the type of decoder, the dialog adds a new option—
Output Mode. Generally, older DM642 EVM boards use the SAA7115
decoder. Newer boards use the default setting TVP5146 decoder. Refer to
“Identifying Your DM642 EVM Board Revision” on page A-4 for
information about identifying the revision of your DM642 EVM.

Input port
Directs the block to capture video from either the 0 or 1 video input port on
the DM642 EVM. The block does not support port 2 for video input.

Output mode (available only when Decoder type is SAA7115)
Because all input video to the board is in analog NTSC 720-by-480 mode,
this option scales the output from the block to different dimensions. Output
modes for the block include various modes, as shown in this table. The
important information in the table is the size of the images. Though the
input to the block is always analog NTSC video, the output from the block
uses the scaling capability of the video decoder to scale the digitized output
image to one of the available sizes listed in the table

Digital Output Mode Description

NTSC 720x480 Scales the output to higher definition TV
mode.

NTSC 640x480 Scales the output to standard (SDTV) mode.

NTSC SIF 320x240 Scales the output to standard interchange
format NTSC. Derived from CCIR 601 video
(most often).

NTSC QCIF 176x144 Scales the output to 1/4 the resolution of CIF
video.

NTSC SQCIF 128x96 Scales the output to 1/4 the resolution of QCIF
video.

tic6000.book Page 290 Monday, February 6, 2006 10:39 AM

DM642 EVM Video ADC

5-291

This option appears in the dialog when you select SAA7115 for the Decoder
type.

Web cameras, PAL format video, and S-Video inputs are not supported.

Output format
Determines how the block represents color data in the output. Choose one
of the following color representations according to what your model and
algorithm require.

Sample time
Tells the block how often to take frames from the video decoder and buffers.
While NTSC video runs at 30 frames/s (1/30 s sample time), you can sample
at any rate below or at the NTSC rate. When you enter a sample time
shorter than 1/30 s (more than 30 frames per second), the block returns an
error.

Remember that sampling times that are not 1/30th of a second may capture
incomplete frames.

Also note that

- The sample time you specify becomes the DM642 timer period that
drives the execution of your model.

Digital Output Format Description

RGB24 Output uses 8 bits each of red, green, and blue
colors to represent the color of each pixel in
the image. RGB color space is
device-dependent.

YCbCr Output from the block includes one luminance
channel Y (essentially the black/white signal)
and two chrominance (color) channels Cb and
Cr to represent the color image data per pixel.
This is the digital standard color space DVDs
use.

Y Black/White video. No color/chromaticity
values.

tic6000.book Page 291 Monday, February 6, 2006 10:39 AM

DM642 EVM Video ADC

5-292

- Your generated application is not synchronized with the input video
signal—the application always runs on the processor timer.

Data order
With data order, you control the way the the video decoder stores and
outputs video data fields and frames of images. Choose one of these options
from the list.

- Row major—store video data in row major order. This is the default
setting and matches most video data.

- Column major—store video data in column major order. Simulink® and
MATLAB both use this format to store images and matrices.

DM642 EVM Video ADC blocks store the image data in row major format
because most video capture devices use a scanning order of left-to-right and
top-to-bottom, favoring the rows.

MATLAB and Simulink use column major ordering to store image and matrix
data. Therefore, some of the Simulink blocks may not work correctly or as
expected with the DM642 EVM Video ADC blocks.

To address this problem, the Video ADC blocks include an option Data order
to let you select either row major or the column major storage formats. By
default, these blocks use row major data format.

When the column major data ordering option is selected, the block performs an
explicit transposition on the image data to map the data format from row major
to column major order. To minimize the processor time spent on the
transposition, the block uses optimized assembly routines to accomplish the
image transposition.

See Also DM642 EVM Video DAC

tic6000.book Page 292 Monday, February 6, 2006 10:39 AM

DM642 EVM Video DAC

5-293

5DM642 EVM Video DACPurpose Configure the video display capability (video encoder) on the DM642 EVM

Library DM642 EVM Board Support Library in Embedded Target for TI C6000 DSP

Description In the project generated from a model, this block provides the code to gather
video from another block in the model, and direct the video stream to the video
output port on the board.

You should input unsigned 8-bit integers to the block in the specified mode.

Adding this block to a model enables code generated from your model to
perform the following tasks:

1 Capture digital video data from the application on your DM642 EVM.

2 Buffer the captured video into frames for NTSC display—two fields per
frame and 30 frames per second, or SVGA display—RGB24 color with
noninterlaced frames.

3 Convert to analog video.

4 Output the converted analog video to the EVM Video Out ports.

Unlike the DM642 EVM Video ADC block, this DAC block does not convert the
video between formats. Nor does this block inherit any settings from the
DM642 EVM Video ADC block, as some of the other C6000 DAC blocks do.

The Mode option specifies both the video format the block accepts and the
format the block outputs to the video output ports on the EVM.

To be able to be displayed, images that you send to the block should be equal to
or smaller than the target display size. If the input images are smaller than the
target display size, the block pads the image by adding zeros to the image.

When you add this block to your Simulink model, it has no affect on your
simulation—it outputs a string of zeros. In code generation, the block creates
the device code needed to buffer, convert, and send video to the output port on
the EVM.

tic6000.book Page 293 Monday, February 6, 2006 10:39 AM

DM642 EVM Video DAC

5-294

Dialog Box

Mode
Specifies the video format for the block. The block then sends video in this
format to the video output port on the EVM. The Mode parameter offers the
following options:

Analog Output Mode Description

NTSC 720x480 YCbCr Analog output of video data in 720-by-480
pixels format with full color

NTSC 640x480 Y Analog video output in 640-by-480 pixels
format with black and white only (luminance).
No color data.

SVGA 800x600 RGB24 Full super VGA format 800-by-600 pixels with
three color channels: 8-bit red, 8-bit green,
and 8-bit blue data.

tic6000.book Page 294 Monday, February 6, 2006 10:39 AM

DM642 EVM Video DAC

5-295

Data order
With data order, you control the way the the video decoder stores and
outputs video data fields and frames of images. Choose one of these options
from the list.

- Row major—store video data in row major order. This is the default
setting and matches most video data.

- Column major—store video data in column major order. Simulink® and
MATLAB both use this format to store images and matrices.

DM642 EVM Video DAC blocks store the image data in row major format
because most video display devices use a scanning order of left-to-right and
top-to-bottom, favoring the rows.

MATLAB and Simulink use column major ordering to store image and matrix
data. Therefore, some of the Simulink blocks may not work correctly or as
expected with the DM642 EVM Video DAC blocks.

To address this problem, the Video DAC blocks include an option Data order
to let you select either row major or the column major storage formats. By
default, these blocks use row major data format.

When the column major data ordering option is selected, the block performs an
explicit transposition on the image data to map the data format from row major
to column major order. To minimize the processor time spent on the
transposition, the block uses optimized assembly routines to accomplish the
image transposition.

Center Image
Directs the block to center the output image on the display. Note that
centering the image requires some computation by the processor so there
are small time and CPU cycles penalties for choosing this option. For that
reason, Center image is cleared by default.

Another note of interest—some cameras pad their video output with zeros
to ensure that the display does not cut off the image on one side, usually
the left. Images that include such padding may appear to be off-center on
the display. In fact, while the displayed image may not appear centered,
the electronic image (the data that compose the displayed image plus the
padding which you cannot see) is centered in the display area.

tic6000.book Page 295 Monday, February 6, 2006 10:39 AM

DM642 EVM Video DAC

5-296

See Also DM642 EVM Video ADC

tic6000.book Page 296 Monday, February 6, 2006 10:39 AM

DM642 EVM LED

5-297

5DM642 EVM LEDPurpose Control the eight light-emitting diodes (LED) on the DM642 Evaluation
Module

Library DM642 EVM Board Support Library in Embedded Target for TI C6000 DSP

Description Controls the user LEDs on the DM642 EVM while the processor executes your
generated code. To trigger the LEDs, input an unsigned 8-bit integer to the
block. In response, the eight user-controlled LEDs reflect the binary equivalent
of that input value—turning off an LED is 0 and turning on an LED is 1.

During operation, the LED block inherits the sample time from the upstream
block in the model. Therefor, each time the model operation encounters the
LED block, the block writes the desired output value to the LEDs.

Dialog Box

You see the block does not provide user options. Adding the block to your model
adds the ability to control the LEDs.

tic6000.book Page 297 Monday, February 6, 2006 10:39 AM

DM642 EVM UDP Receive

5-298

5DM642 EVM UDP ReceivePurpose Configure Ethernet driver to receive UDP message as uint8 vector

Library DM642 EVM Board Support Library in Embedded Target for TI C6000 DSP

Description Configure the Ethernet driver on the EVM to receive UDP messages. A UDP
message comes into this block from the transport layer, usually TCP/IP. The
block passes the message to the next downstream block. One block output is the
data vector from the message. A second output is a flag that indicates when
new UDP message is available. The third output specifies the length of the
message.

Models can contain only one DM642 EVM UDP Receive block.

Note To use the UDP Send and Receive blocks, you must include the IP
Config block to configure the Ethernet parameters for the target network.
This block sets up the IP drivers for use and must be in the model for any
network-related processing.

Additional options let you decide whether the UDP messages work in blocking
mode and set the sampling time for polling for new messages.

tic6000.book Page 298 Monday, February 6, 2006 10:39 AM

DM642 EVM UDP Receive

5-299

Dialog Box

IP address to receive from (0.0.0.0 to accept all)
Specifies the IP address from which the block accepts messages. Setting
the address 0.0.0.0 configures the block to accept messages from any IP
address. Setting a specific address, not 0.0.0.0, directs the block to accept
messages from the specified address only.

IP port to receive from
Specify the port the block accepts messages from on this machine. The
other end of the communication, usually a UDP Send block, sends
messages to this port. The default value is 25000, but the values range from
0 to 65535.

Output port width (bytes)
Specifies the width of messages that the block accepts. When you design
the transmit end of the UDP communication channel, you decide the

tic6000.book Page 299 Monday, February 6, 2006 10:39 AM

DM642 EVM UDP Receive

5-300

message width. Set this to a value as large or larger than any message you
expect to receive.

UDP receive buffer size (bytes)
Specify the size of the buffer in which UDP messages are stored when
received. 8192 bytes is the default size. You need a buffer large enough to
store UDP messages that come in while your process reads a message from
the buffer or performs other tasks. This prevents overflow of the receive
buffer.

Enable blocking mode
Select this option to put the UDP receive process in blocking mode meaning
the block outputs received messages before accepting input new messages.
In blocking mode, program execution for receiving data stops until data in
the buffer gets sent. In non-blocking mode, the block receives data or sends
data at any time. Processes do not wait for data.

Sample time (seconds)
Use this option to specify when the block polls for new messages. Entering
-1 lets the block inherit the sample time from an upstream block. Setting
this to a specific value, often large, can reduce the chances that UDP
messages get dropped. By default, the sample time is 0.01 seconds.

See Also DM642 EVM UDP Send

tic6000.book Page 300 Monday, February 6, 2006 10:39 AM

DM642 EVM UDP Send

5-301

5DM642 EVM UDP SendPurpose Configure Ethernet driver to send UDP message

Library DM642 EVM Board Support Library in Embedded Target for TI C6000 DSP

Description The UDP send block configures the onboard Ethernet driver to receives a uint8
vector that it sends as a UDP message to the host. Input must be in the form
of a uint8 vector with UDP format.

Models can contain only one DM642 EVM UDP Send block.

Note To use the UDP Send and Receive blocks, you must include the IP
Config block to configure the Ethernet parameters for the target network.
This block sets up the IP drivers for use and must be in the model for any
network-related processing.

Dialog Box

IP address to send to (255.255.255.255 for broadcast)
Specify the IP address to which the block sends the message. Entering the
address 255.255.255.255 tells the block to broadcast the message to any
listening IP address. Entering a specific IP address limits the block to
sending the message to the specified address.

tic6000.book Page 301 Monday, February 6, 2006 10:39 AM

DM642 EVM UDP Send

5-302

IP port to send to
Specify the port on the host to which the block sends the message.

Use the following local IP port
Specify the local IP port the block sends the message from. Entering -1 (the
default value) for this option allows the network to select automatically the
local IP port to use to send the message.

If the address you are sending to expects the message to come from
a specific port, enter that port address here. If you enter a port number in
the DM642 EVM UDP Receive block option IP port to receive from, enter
that port identifier here.

See Also DM642 EVM UDP Receive

tic6000.book Page 302 Monday, February 6, 2006 10:39 AM

DM642 EVM Video Port

5-303

5DM642 EVM Video PortPurpose Configure video port to receive video data stream from video input port

Library DM642 EVM Board Support Library in Embedded Target for TI C6000 DSP

Description Adding this block to your model lets you define the format of raw video
captured by the video port on the DM642 EVM. The block outputs video as
a stream of image frames built from the defined input.

You can select the video port the block reads from, set the size of the input data
in bits per pixel, and define the frame sizes in pixels and lines.

When your process captures standard video input, like NTSC format video,
another block for the DM642 EVM may be appropiate—the DM642 EVM Video
ADC block.

By default, the block settings define NTSC format input video to capture—640
pixels wide by 480 lines tall using 8 bits per pixel.

The block does not check your inputs to determine whether they form valid
frames. You must be sure the values you assign work for you application.

The block does not support video capture from port 2 on the EVM.

Blanking intervals, both horizontal and vertical, represent the time needed for
the scan to return to the starting point of the next line (the horizontal blanking
period) or field or frame (the vertical blanking period).

tic6000.book Page 303 Monday, February 6, 2006 10:39 AM

DM642 EVM Video Port

5-304

Dialog Box

Video Port
Select the video port to be the source of the raw video data stream. Either
0 or 1 appear on the list and 0 is the default port.

Number of bits per pixel
Select the number of bits used to represent a pixel in the input video
stream. List entries tell you the input pixel representation and the data
type of the output pixels for each input size. You cannot enter values here.
Select from the list.

Number of pixels per line

tic6000.book Page 304 Monday, February 6, 2006 10:39 AM

DM642 EVM Video Port

5-305

Configure the width of each video frame in pixels. Enter the pixel count as
an integer greater than zero.

Number of lines per frame
Configure the height of a single frame of video in lines. Enter the number
of lines as an integer greater than zero. Combined with the Number of bits
per pixel, this specifies the video frame format.

Pixel clock frequency
Specify the rate at which picture elements (pixels) arrive at the block input.
Usually you enter this in Hz using scientific notation as shown by the
default value. You can enter the value in decimal notation as well.

Horizontal blanking (in pixel clocks)
The blanking signal that occurs at the end of each video scanning line.
Enter the value as an integer number of pixels. One video line comprises
the number of pixels in the line plus the horizontal blanking pixels.

Vertical blanking (in pixel clocks)
The blanking signal that occurs at the end of each video field or frame.
Enter this value as an integer number of lines (pixels). One frame includes
the number of lines in the height of the frame plus the additional blanking
lines.

Data order
With this option you tell the encoder whether to output video in row major
or column major order. Most video capture and display systems use row
major ordering. MATLAB and Simulink use column major order. As a
result, some Simulink blocks and MATLAB operations may not produce
the output you expect unless you change the ordering for video from the
default row major setting to column major.

Inherit sample time
Selects whether the block inherits the sample time from the model base
rate/Simulink base rate as determined in the Solver options in
Configuration Parameters. Selecting Inherit sample time directs the
block to use the specified rate in model configuration. Entering -1
configures the block to accept the sample rate from the upstream HWI,
Task, or Triggered Task blocks.

tic6000.book Page 305 Monday, February 6, 2006 10:39 AM

DM642 EVM Video Port

5-306

See Also DM642 EVM Video ADC, DM642 EVM Video DAC

tic6000.book Page 306 Monday, February 6, 2006 10:39 AM

DM642 EVM RESET

5-307

5DM642 EVM RESETPurpose Reset the DM642 EVM to initial conditions

Library DM642 EVM Board Support in Embedded Target for TI C6000 DSP

Description Double-clicking this block in a Simulink model window resets the DM642 EVM
that is running the executable code built from the model. When you
double-click the Reset block, the block runs the software reset function
provided by CCS that resets the processor on your DM642 EVM. Applications
running on the board stop and the signal processor returns to the initial
conditions you defined.

Before you build and download your model, add the block to the model as
a stand-alone block. You do not need to connect the block to any block in the
model. When you double-click this block in the block library it resets your
DM642 EVM. In other words, anytime you double-click a DM642 EVM RESET
block you reset your DM642 EVM.

Dialog Box This block does not have settable options and does not provide a user interface
dialog.

tic6000.book Page 307 Monday, February 6, 2006 10:39 AM

From Memory

5-308

5From MemoryPurpose Get data from a specific memory location into your code running on the C6000
target

Library C6000 DSP Core Support in Embedded Target for TI C6000 DSP for TI DSP

Description When you generate code from your Simulink model in Real-Time Workshop
with this block in place, code generation inserts the C commands to create
a read process that gets data from memory on the target. The inserted code
reads the specified memory location in Memory address and returns the data
stored there. Any valid memory location on the target works with the block.

When you look at your generated code, you find lines of code like the following
that represent the From Memory block operation:

/* S-Function Block: <Root>/From Memory (c6000mem_src) */
 {
 /* Memory Mapped Input */
 rtB.From_Memory = (real_T)(*((volatile int *)(4096U)));
 }

In simulations this block does not perform any operations, with the exception
that the block does output port checking. From Memory blocks work only in
code generation and when your model runs on your target.

Using From Memory Blocks
Be careful when you use From Memory blocks in your models in combination
with To Memory blocks. Because the To Memory blocks give you control over
where the target stores information in memory, pay attention to how you use
the From Memory block to retrieve data from memory. You can return data
that is not what you expect.

Using the From Memory block itself does not cause problems in generated code
on your target.

When you use the options in the To Memory block to specify where the project
writes data in memory, you might be writing to memory locations that are
reserved for the compiler or for other uses. Reading from those locations could
return the wrong answer.

To prevent your model from encountering memory errors like these, generate
your code once without loading the COFF file to the target. Look at the

tic6000.book Page 308 Monday, February 6, 2006 10:39 AM

From Memory

5-309

generated file projectname.map, where projectname is the name of your
project, to see the memory range that the compiler uses.

From this list of allocated memory, determine the memory ranges that the
compiler uses and the locations of free memory or the memory to read with your
From Memory block. Determine the memory locations from which to read your
data from the .map file listings.

You should examine the .map file for your project each time you change the
Simulink model associated with your project.

Dialog Box

Memory address (hex)
Enter the address of the memory location that contains the data to return.
Note that you do not need to start the address with 0x to indicate that it is
hexadecimal.

Data type
Sets the type for the data coming from the block. Select one of the following
types:

•double—double-precision floating-point values. This is the default
setting.

tic6000.book Page 309 Monday, February 6, 2006 10:39 AM

From Memory

5-310

•single—single-precision floating-point values.

•uint8—8-bit unsigned integers. Output values range from 0 to 255.

•int16—16-bit signed integers. With the sign, the values range from
-32768 to 32767.

•int32—32-bit signed integers. Values range from -231 to (231-1).

Sample time
Specifies the time between samples of the signal. The default is 1 second
between samples, for a sample rate of one sample per second
(1/Sample time).

See Also To Memory

tic6000.book Page 310 Monday, February 6, 2006 10:39 AM

From Rtdx

5-311

5From RtdxPurpose Add a named RTDX input channel to Simulink models

Library RTDX Instrumentation in Embedded Target for TI C6000 DSP for TI DSP

Description When you generate code from your Simulink model in Real-Time Workshop
with this block in place, code generation inserts the C commands to create an
RTDX input channel on the target. The inserted code opens and enables the
channel with the name you specify in Channel name in the block parameters.
You can open, close, disable, and enable the channel from the host side
afterwards, overriding the target side status.

In the generated code, you see a command like the following

RTDX_enableInput(&channelname)

where channelname is the name you enter in Channel name.

In simulations this block does not perform any operations with the exception
that the block will generate an output matching your specified initial
conditions. From Rtdx blocks work only in code generation and when your
model runs on your target.

If you are using the Link for Code Composer Studio Development Tools, you
need to configure and cleanup RTDX properly before and after executing your
model or code. Refer to the RTDX tutorials in the Link for Code Composer
Studio documentation in the online Help system to see an example of how to do
this housekeeping task.

The initial conditions you set in the block parameters determine the output
from the block to the target for the first read attempt. Specify the initial
conditions in one of the following ways:

• Scalar value—the block generates one output sample with the value of the
scalar. For a value of 0, the block outputs a zero to the processor. When
Output dimension specifies an array, every element in the array has the
same scalar value.

• Null array ([])—same output as a scalar with the value zero for every
sample.

Using RTDX in your model involves:

tic6000.book Page 311 Monday, February 6, 2006 10:39 AM

From Rtdx

5-312

• Adding one or more To Rtdx or From Rtdx blocks to your model to prepare
your target

• Downloading and running your model on your target

• Enabling the RTDX channels from MATLAB or using Enable RTDX
channel on start-up on the block dialog

• Using the readmsg and writemsg functions in MATLAB to send and retrieve
data from the target over RTDX

To see more details about using RTDX in your model, refer to
Using Links in your Link for Code Composer Studio Development Tools
documentation in the online Help system.

tic6000.book Page 312 Monday, February 6, 2006 10:39 AM

From Rtdx

5-313

Dialog Box

Channel name
Defines the name of the input channel to be created by the generated code.
Recall that input channels refer to transferring data from the host to the
target (input to the target). To use this RTDX channel, you enable and open
the channel with the name, and send data from the host to the target across
this channel. Specify any name as long as it meets C syntax requirements
for length and character content.

Enable blocking mode

tic6000.book Page 313 Monday, February 6, 2006 10:39 AM

From Rtdx

5-314

Puts RTDX communications into blocking mode where the target processor
waits to continue processing until new data is available from the From
Rtdx block. Selecting blocking mode slows your processing while the
processor waits—if your new data is not available when the processor
needs it, your process stops. In nonblocking mode, the processor uses old
data from the block when new data is not available. Nonblocking operation
is the default and recommended for most operations.

Selecting the Blocking option disables the Initial conditions option.

Initial conditions
Specifies what data the processor reads from RTDX for the first read. This
can be 0, null ([]), or a scalar. You must have an entry for this option.
Leaving the option blank causes an error in Real-Time Workshop.

Sample time
Specifies the time between samples of the signal. The default is 1 second
between samples, for a sample rate of one sample per second
(1/Sample time).

Output dimensions
Defines a matrix for the output signal from the block, where the first value
is the number of rows and the second is the number of columns in the
output matrix. For example, the default setting [1 64] represents a 1-by-64
matrix of output values. Enter a 1-by-2 vector of doubles for the
dimensions.

Frame-based
Sets a flag at the block output that directs downstream blocks to use
frame-based processing on the data from this block. In frame-based
processing, the samples in a frame are processed simultaneously. In
sample-based processing, samples are processed one at a time.
Frame-based processing can greatly increase the speed of your application
running on your target. Note that throughput remains the same in samples
per second processed. Frame-based operation is the default.

Data type
Sets the type for the data coming from the block. Select one of the following
types:

tic6000.book Page 314 Monday, February 6, 2006 10:39 AM

From Rtdx

5-315

• Double—double-precision floating-point values. This is the default setting.
Values range from -1 to 1.

• Single—single-precision floating-point values ranging from -1 to 1.

• Uint8—8-bit unsigned integers. Output values range from 0 to 255.

• Int16—16-bit signed integers. With the sign, the values range from -32768
to 32767.

• Int32—32-bit signed integers. Values range from -231 to (231-1).

Enable RTDX channel on start-up
When your application code includes RTDX channel definitions, selecting
this option enables the channels when you start the channel from
MATLAB. With this selected, you do not need to use the Link for Code
Composer Studio Development Tools enable function to prepare your
RTDX channels. Note that the option applies only to the channel you
specify in Channel name. You do have to open the channel.

See Also ccsdsp, readmsg, To Rtdx, writemsg

tic6000.book Page 315 Monday, February 6, 2006 10:39 AM

HWI

5-316

5HWIPurpose Generate Interrupt Service Routine

Library DSP/BIOS Library in Embedded Target for TI C6000 DSP

Description Creates an Interrupt Service Routine (IRS) that executes the task block or
subsystem that is downstream from the block. ISRs are functions that the CPU
executes in response to an external event.

Interrupt numbers for C6000 family processors range from 0 to 15, with 0
reserved for the reset ISR. The following table presents the set of interrupt
numbers for the C6713 processor. For more detailed and specific information
about interrupts, refer to Texas Instruments technical documentation for your
target processor.

Interrupt Number Default Event Module

0 RESET

1 NMI

2 Reserved

3 Reserved

4 GPINT4 GPIO

5 GPINT5 GPIO

6 GPINT6 GPIO

7 GPINT7 GPIO

8 EDMAINT EDMA

9 EMUDTDMA Emulation

10 SDINT EMIF

11 EMURTDXRX Emulation

12 EMURTDXTX Emulation

13 DSPINT HPI

tic6000.book Page 316 Monday, February 6, 2006 10:39 AM

HWI

5-317

In models, you usually follow this block with either a Task or Triggered Task
block, or a subsystem function call block.

Dialog Box

Interrupt number(s)
Enter one or more integer values as a vector that represent interrupts.
Interrupts have any value from 0,the highest priority to 15, lowest priority.
As shown, enter the values enclosed in square brackets. For example,
entering

[3 5 15]

results in three interrupt routines. [5 8] is the default entry, specifying
two interrupts.

14 TINT0 Timer 0

15 TINT1 Timer 1

Interrupt Number Default Event Module

tic6000.book Page 317 Monday, February 6, 2006 10:39 AM

HWI

5-318

Preemption flag(s)
Higher priority interrupts can prempt interrupts that have lower priority.
To allow you to control preemption, use the preemption flags to specify
whether an interrupt can be preempted.

Entering 1 indicates that the interrupt can be preempted. Entering 0
indicates the the interrupt can not be preempted. When Interrupt
numbers contains more than one interrupt priority, you can assign
different preemption flags to each interrupt by entering a vector of flag
values, corresponding to the order of the interrupts in Interrupt numbers.
If Interrupt numbers contains more than one interrupt, and you enter
only one flag value here, that status applies to all interrupts.

In the default settings [0 1], the interrupt with priority 5 in Interrupt
numbers is not preemptible and the priority 8 interrupt can be preempted.

Manage own timer
The ISR generated by the this block can manage its own time by reading
time from the clock on the board. Selecting this option directs the ISR to
maintain the time itself. When you select Manage own timer, you enable
the Timer resolution option that lets you set the timer resolution the ISR
uses.

Timer resolution (seconds)
When you direct the block to manage its own time, this option (available
only when you select Manage own timer) lets you set the resolution of the
clock. Enter the desired resolution in seconds. The default is 1/1000
seconds, 0.001.

Enable simulation input
Selecting this option adds an input port to the block for simulating inputs
in Simulink. Connect interrupt simulation sources to the input. This option
affects simulation only. It does not affect generated code.

See Also Task, Triggered Task

tic6000.book Page 318 Monday, February 6, 2006 10:39 AM

Idle Task

5-319

5Idle TaskPurpose Create free-running task

Library C6000 DSP Core Support in Embedded Target for TI C6000 DSP

Description Create a task the runs during DSP/BIOS idle loop processing. Tasks assigned
in this block run the downstream subsystems while the processor is in the idle
loop.

Dialog Box

Task number(s)

Preemption flag(s)
Higher priority interrupts can prempt interrupts that have lower priority.
To allow you to control preemption, use the preemption flags to specify
whether an interrupt can be preempted.

Entering 1 indicates that the interrupt can be preempted. Entering 0
indicates the the interrupt can not be preempted. When Task number(s)
contains more than one task, you can assign different preemption flags to
each taks by entering a vector of flag values, corresponding to the order of

tic6000.book Page 319 Monday, February 6, 2006 10:39 AM

Idle Task

5-320

the tasks in Task number(s). If Task number(s) contains more than one
task, and you enter only one flag value here, that status applies to all tasks.

In the default settings [0 1], the task with priority 5 in Task number(s)
is not preemptible and the priority 8 task can be preempted.

Manage own timer
The tasks generated by the this block can manage their own time by
reading time from the clock on the board. Selecting this option directs the
tasks to maintain the time themselves.

Enable simulation input
When you select this option, Simulink adds an input port to the Idle Task
block. This port is used in simulation only. Connect one or more simulated
interrupt sources to the simulation input.

tic6000.book Page 320 Monday, February 6, 2006 10:39 AM

Hardware Interrupt

5-321

5Hardware InterruptPurpose Create interrupt service routine on C6000 hardware target

Library C6000 DSP Core Support in Embedded Target for TI C6000 DSP

Description

Dialog Box

Interrupt Number(s)
Specify an array of interrupt numbers for the interrupts to install. The valid
range is 1 to 15.

The width of the block output signal corresponds to the number of interrupt
numbers specified here. Combined with the Simulink task priority(s) you
enter and the preemption flag you enter for each interrupt, these three values
define how the code and target process interrupts during asynchronous
scheduler operations.

tic6000.book Page 321 Monday, February 6, 2006 10:39 AM

Hardware Interrupt

5-322

Simulink task priority(s)
Each output of the Hardware Interrupt block drives a downstream block (for
example, a function call subsystem). Simulink task priority specifies the
Simulink priority of the downstream blocks. Specify an array of priorities
corresponding to the interrupt numbers entered in Interrupt number(s).

Simulink task priority values are required to generate the proper rate
transition code (see Rate Transitions and Asynchronous Blocks).The task
priority values are also required to ensure absolute time integrity when the
asynchronous task needs to obtain real time from its base rate or its caller.
Typically, you assign priorities for these asynchronous tasks that are higher
than the priorities assigned to periodic tasks.

Preemption flag(s)
Higher priority interrupts can prempt interrupts that have lower priority.
To allow you to control preemption, use the preemption flags to specify
whether an interrupt can be preempted.

Entering 1 indicates that the interrupt can be preempted. Entering 0
indicates the the interrupt can not be preempted. When Interrupt
numbers contains more than one interrupt priority, you can assign
different preemption flags to each interrupt by entering a vector of flag
values, corresponding to the order of the interrupts in Interrupt numbers.
If Interrupt numbers contains more than one interrupt, and you enter
only one flag value here, that status applies to all interrupts.

In the default settings [0 1], the interrupt with priority 5 in Interrupt
numbers is not preemptible and the priority 8 interrupt can be preempted.

Manage own timer
The ISR generated by the this block can manage its own time by reading time
from the clock on the board. Selecting this option directs the ISR to maintain
the time itself. When you select Manage own timer, you enable the Timer
resolution option that lets you set the timer resolution the ISR uses.

Enable simulation input
When you select this option, Simulink adds an input port to the Hardware
Interrupt block. This port is used in simulation only. Connect one or more
simulated interrupt sources to the simulation input.

tic6000.book Page 322 Monday, February 6, 2006 10:39 AM

Task

5-323

5TaskPurpose Create task that runs as separate DSP/BIOS thread

Library DSP/BIOS Library in Embedded Target for TI C6000 DSP

Description Creates a free-running task that runs in response to an ISR and as a separate
DSP/BIOS thread. The spawned task runs the downstream function call
subsystem in the model.

When the process runs this task, it uses a semphore structure to enable the
task and restrict access by it to other resources.

Dialog Box

tic6000.book Page 323 Monday, February 6, 2006 10:39 AM

Task

5-324

Task name (32 characters or less)
Creates a name for the task. Enter a string of up to 32 characters, including
numbers and letters as needed. You cannot use the standard C reserved
characters, such as / or : in the name.

Task priority (1-15)
Sets the priority for the task, where 1 is the lowest priority and 15 the
highest. Higher priority tasks can preempt tasks that have lower priority.

Stack size (bytes)
Specify the size of the stack the task uses. The default value is 4096 bytes.

Stack memory segment
Specify where the stack resides in memory.

Manage own timer
This block can manage its own time by reading time from the clock on the
board. Selecting this option directs the task/block to maintain the time
itself. When you select Manage own timer, you enable the Timer
resolution option that lets you set the timer resolution the task uses.

Timer resolution (seconds)
When you direct the block to manage its own time, this option (available
only when you select Manage own timer) lets you set the resolution of the
clock. Enter the desired resolution in seconds. The default is 1/1000
seconds, 0.001.

See Also Triggered Task, HWI

tic6000.book Page 324 Monday, February 6, 2006 10:39 AM

TMDX326040 ADC

5-325

5TMDX326040 ADCPurpose Configure the codec on the TMDX326040A daughter card to generate a stream
of digital data to the processor on the C6711 DSK

Library TMDX326040 Support in Embedded Target for TI C6000 DSP for TI DSP

Description With the TMDX326040A daughter card installed on your C6711 DSK, you use
this block to configure the codec on the card. The daughter card codec replaces
the codec on the C6711 DSK, taking the analog input from the analog ports on
the DSK and converting them to digital data. This block configures the
analog-to-digital conversion performed by the daughter card.

Note This card is also known as the PCM3003 Audio Daughter Card.

Both the sampling rate and data format for the daughter card codec are fixed:

• Sampling rate is 48 kHz.

• Data format is linear 16-bit words.

Data leaving the codec on the daughter card goes to the COM port on the C6711
DSK and then to the C6711 digital signal processor.

You have the choice of using either stereo or monaural input to the card. The
Stereo option tells the codec whether the input is in stereo or mono format.
When you use the block, the Stereo option is selected by default.

Other codec options help you configure the digital data from the daughter card,
such as setting the data type (double, single, or integer) and selecting whether
the output data should be unmodified or scaled to the range between -1 and 1.

tic6000.book Page 325 Monday, February 6, 2006 10:39 AM

TMDX326040 ADC

5-326

Dialog Box

Stereo
Use the Stereo check box to indicate whether the audio input is monaural
or stereo. Clear the check box to choose monaural audio input. Select the
check box to enable stereo audio input. Monaural (mono) input is left
channel only, but the output sends left channel content to both the left and
right output channels; stereo uses the left and right channels.

Output data type

Selects the word length and shape of the data from the codec. By default,
double is selected. Options are Double, Single, and Integer

Scaling
Selects whether the codec data is unmodified, or normalized to the output
range to ±1.0, based on the codec data format. Select either Normalize or
Integer for the scaling. Normalize is the default setting. Scaling applies
only to the floating-point data types double and single. When you use
integer data, data values get scaled to be between -32768 to 32767.

tic6000.book Page 326 Monday, February 6, 2006 10:39 AM

TMDX326040 ADC

5-327

Samples per frame
Creates frame-based outputs from sample-based inputs. This parameter
specifies the number of samples of the signal the block buffers internally
before it sends the digitized signals, as a frame vector, to the next block in
the model. 64 samples per frame is the default setting. Notice that the
frame rate depends on the sample rate and frame size. For example, if your
input is 32 samples per second, and you select 64 samples per frame, the
frame rate is one frame every two seconds. The throughput remains the
same at 32 samples per second.

See Also TMDX326040 DAC

tic6000.book Page 327 Monday, February 6, 2006 10:39 AM

TMDX326040 DAC

5-328

5TMDX326040 DACPurpose Configure the codec on the daughter card to send data to the analog output on
the card

Library TMDX326040 Support in Embedded Target for TI C6000 DSP for TI DSP

Description With the TMDX326040A daughter card installed on your C6711 DSK, you use
this block to configure the codec on the card. The daughter card codec replaces
the codec on the C6711 DSK, sending its output to the output connectors on the
card. This block configures the digital-to-analog conversion performed by the
daughter card.

Note This card is also known as the PCM3003 Audio Daughter Card.

Both the sampling rate and data format for the daughter card codec are fixed:

• Sampling rate is 48 kHz.

• Data format is linear 16-bit words.

Analog data leaving the codec on the daughter card outputs on the card and
then to the C6711 DSK output connectors. Whether the output is in monaural
or stereo depends on the setting of the TMDX326040 ADC block in your model.

To work properly, you must be sure the input signal is a column vector when
you use the monaural mode, or an N-by-2 matrix in stereo mode. This input
format must match the ADC block mode—when you select the Stereo option
for the C6711 ADC block operating mode, you must format your input data as
an N-by-2 matrix here.

Other codec options help you configure the digital data from the daughter
card—scaling and overflow mode. The scaling option determines whether the
input data remains unmodified or is scaled to the range between -1 and 1.

tic6000.book Page 328 Monday, February 6, 2006 10:39 AM

TMDX326040 DAC

5-329

Dialog Box

Scaling
Selects whether the input to the codec represents unmodified data, or data
that has been normalized to the range ±1.0. Matching the setting for the
TMDX326040 ADC block is appropriate here. Normalized scaling is the
default setting.

When the data type is integer, this scaling option does not apply. Scaling
applies only to floating-point data types single and double. You can select
different data types and scaling for the ADC and DAC blocks within your
model.

Overflow mode
Determines how the codec responds to data that is outside the range
specified by the Scaling parameter. You choose either Wrap or Saturate
from the list to specify how to handle the result of an overflow in an
operation. Saturate mode is slightly less efficient because of the logic
executed for each sample to determine whether to saturate the value.

See Also TMDX326040 ADC

tic6000.book Page 329 Monday, February 6, 2006 10:39 AM

To Memory

5-330

5To MemoryPurpose Send data from your model running in the processor to memory on your C6000
target

Library C6000 DSP Core Support in Embedded Target for TI C6000 DSP for TI DSP

Description When your Simulink model has this block in place, Real-Time Workshop code
generation inserts the C commands to write data to the specified memory
location on the target. The inserted code takes the value you send to the block
input port and writes it to the location in Memory address.

In the generated code, you see something like these lines representing the To
Memory block operation:

 /* S-Function Block: <Root>/To Memory (c6000mem_snk) */
 {
 /* Memory Mapped Output */
 *((volatile int *)(4096U)) = (real32_T) 8;
 }

In simulations this block does not perform any operations. To Memory blocks
work only in code generation and when your model runs on your target.

Options for the block let you send different starting and ending values to
memory when the program runs on the digital signal processor.

Using To Memory Blocks
You must take care when you use To Memory blocks in your models. Because
the To Memory blocks give you control over where the target stores information
in memory, and provide full flexibility to copy any section of target data and
write to any memory sections, pay attention to how you use the block memory
options. This flexibility can lead to unexpected behavior caused by memory
operations in your model.

When you use the optional features in the To Memory block to write data to
specified locations in memory, you might be writing to memory locations that
are reserved for the compiler to use. Writing to those locations can cause CCS
to crash.

To prevent your model from encountering memory errors like these, generate
your code once without loading the COFF file to the target. Look at the

tic6000.book Page 330 Monday, February 6, 2006 10:39 AM

To Memory

5-331

generated file projectname.map, where projectname is the name of your
project, to see the memory range that the compiler uses.

From this list of allocated memory, you can determine the memory ranges that
you can use safely without overwriting the reserved compiler sections.

You should examine the .map file for your project each time you change the
Simulink model associated with your project.

Dialog Box

Memory address (hex)
Specifies the address to which you are sending data from the code. Enter
the address as a hexadecimal value, without the leading 0x indicator. Any
valid memory address works, as long as the processor can write to it.

Data type

tic6000.book Page 331 Monday, February 6, 2006 10:39 AM

To Memory

5-332

Sets the type for the data going to memory. Select one of the following
types:

•double—double-precision floating-point values. This is the default
setting and allows the full range of values representable in
double-precision arithmetic as defined by the IEEE specification.

•single—single-precision floating-point values whose range is defined by
the IEEE specification on single-precision values.

•uint8—8-bit unsigned integers. Input values range from 0 to 255.

•int16—16-bit signed integers. With the sign, the values range from
-32768 to 32767.

•int32—32-bit signed integers. Values range from -231 to (231-1).

Use initial value
Select this option when you want to send a specific value to memory during
the first execution on your model. Enter your desired value in Initial
value.

Initial value
Enter the value to send to memory on the first execution of this code. Enter
a floating-point integer here. The block interprets the value you enter as an
integer. For example, to place the integer value 100 in memory, enter 100
here. Note that the block does not support MATLAB integer data types.

Use termination value
Select this option when you want to send a specific value to memory during
the last or final execution of your model. Enter your desired value in
Termination value.

Termination value
Enter the value to send to memory on the last execution of this code. Enter
a floating-point integer here. The block interprets the value you enter as an
integer. For example, to place the integer value 100 in memory on the final
execution pass, enter 100 here.

Real-time enabled
In basic terms, generated code executes as follows:

1 Initialize

tic6000.book Page 332 Monday, February 6, 2006 10:39 AM

To Memory

5-333

2 Start execution (your initial value is written to memory)

3 Output (execute loop for each time step)

4 Terminate execution (your termination value is written to memory)

Selecting Real-time enabled causes the code to write data to memory during
the output phase of code execution. When you clear this option, the code does
nothing during the output phase—it does not write data to the memory address
you specify in Memory address. You might clear Real-time enabled when you
want to write a value to memory only during the start phase (or only during the
terminate phase, or during both phases) but not during output execution). The
block input port disappears when you clear this check box.

See Also From Memory

tic6000.book Page 333 Monday, February 6, 2006 10:39 AM

To Rtdx

5-334

5To RtdxPurpose Add a named RTDX output channel to Simulink models

Library RTDX Instrumentation in Embedded Target for TI C6000 DSP for TI DSP

Description When your Simulink model has this block in place, Real-Time Workshop code
generation inserts the C commands to create an RTDX output channel on the
target. The inserted code opens and enables the channel with the name you
specify in Channel name. You can open, close, disable, and enable the channel
from the host side afterwards, overriding the target side status.

In the generated code from models with this block, you see a command like

RTDX_enableOutput(&channelname)

where channelname is the name you enter in Channel name.

In simulations this block does not perform any operations. To Rtdx blocks work
only in code generation and when your model runs on your target.

Using RTDX in your model involves:

• Adding one or more RTDX blocks to your model to prepare your target

• Downloading and running your model on your target

• Enabling the RTDX channels from MATLAB

• Using the readmsg and writemsg functions in MATLAB to send and retrieve
data from the target over RTDX

To see more details about using RTDX in your model, refer to
Tutorial 1-2—Using Links for RTDX in your Link for Code Composer Studio
documentation.

One mistake is to connect a To Rtdx block directly to a ADC block, or another
source block. Due to current RTDX timing constraints, the generated code from
this arrangement does not work as you expect. Look at the following model for
an example that does not properly transfer data.

tic6000.book Page 334 Monday, February 6, 2006 10:39 AM

To Rtdx

5-335

Applications that you generate from models that contain the directly connected
blocks are likely to overrun because the sampling time of the codec or source is
much faster than RTDX processing time. RTDX will not be able to keep up.
This is true even if you do not generate your application from Simulink.

Adding additional blocks can fix the problem. In the next model, adding the
Downsample block with 32 for K, the Downsample factor, allows RTDX to
return messages as expected.

When you are using the Link for CCS to transfer data from the target to the
host (MATLAB), this overrun is manifested by cc.rtdx.msgcount eventually
decreasing to zero.

You need to modify your application such that:

• Data going to the RTDX block channel is slowed down. For example, use the
Downsample block. Downsampling to 32 usually works fine.

To RTDX
ochan1

To RTDX

C6713 DSK
DAC

DAC

Line In
C6713 DSK

ADC

ADC

To RTDX
ochan1

To RTDX

32

Downsample

C6713 DSK
DAC

DAC

Line In
C6713 DSK

ADC

ADC

tic6000.book Page 335 Monday, February 6, 2006 10:39 AM

To Rtdx

5-336

• Give the RTDX more time to process a message transfer by decreasing the
size of the data (such as using short instead of int data types).

• Depending on the application type you are developing, you can use the
standard RTDX or the high-speed RTDX. If you are using video processing
using standard RTDX, you will not get the desired output. Please refer to the
TI documentation for more information.

To enable high-speed RTDX in Simulink:

- In your model, go to Simulation->Configuration Parameters.

- Select Real-Time Workshop on the left pane. Highlight the RTW system
target file options of the TI 6000 target.

- Select TIC6000 target selection on the left pane and on the right pane,
select Enable High-Speed RTDX.

If you are using the Link for Code Composer Studio Development Tools, you
need to configure and cleanup RTDX properly before and after executing your
model or code. Refer to the RTDX tutorials in the Link for Code Composer
Studio documentation in the online Help system to see an example of how to do
this housekeeping task.

Dialog Box

Channel name
Defines the name of the output channel on the target DSP. Recall that
output channels refer to transferring data from the target to the host
(output from the target). To use this RTDX channel, you enable and open
the channel with the name, and send data from the target to the host across

tic6000.book Page 336 Monday, February 6, 2006 10:39 AM

To Rtdx

5-337

this channel. Specify any name as long as it meets C syntax requirements
for length and character content.

Enable blocking mode
Puts RTDX communications into blocking mode where the target processor
waits to continue processing until new data is available from the To Rtdx
block.

In blocking mode, writing a message is suspended while the RTDX channel
is busy, for example if a message is being written in or out of the channel.
While suspended, the code waits at the RTDX_write call site until the
channel is no longer busy. Note that higher priority interrupts temporarily
divert the program execution from this call site. Eventually, program
execution comes back and waits until the channel stops writing.

In nonblocking mode, writing a message is abandoned if the RTDX channel
is busy (when it is writing —the data is being written in or out of the
channel). The code continues with the current iteration.

Selecting blocking mode slows your processing while the processor waits—
if the previous message is not written before the next write, your process
stops. Enable blocking mode is selected by default and is recommended
for most operations.

Enable RTDX channel on start-up
When your application code includes RTDX channel definitions, selecting
this option enables the channels when you start the channel from
MATLAB. With this selected, you do not need to use the Link for Code
Composer Studio Development Tools enable function to prepare your
RTDX channels. Note that the option applies only to the channel you
specify in Channel name. You do have to open the channel.

See Also ccsdsp, From Rtdx, readmsg, writemsg

tic6000.book Page 337 Monday, February 6, 2006 10:39 AM

Triggered Task

5-338

5Triggered TaskPurpose Create asynchronously triggered task

Library DSP/BIOS Library in Embedded Target for TI C6000 DSP

Description Creates a task that runs asynchronously in response to an ISR and as a
separate DSP/BIOS thread. The spawned task runs the downstream function
call subsystem in the model.

When the process runs this task, it uses a semphore structure to enable the
task and restrict access by it to other resources.

Dialog Box

Task name (32 characters or less)
Creates a name for the task. Enter a string of up to 32 characters, including
numbers and letters as needed. You cannot use the standard C reserved
characters, such as / or : in the name.

Task priority (1-15)

tic6000.book Page 338 Monday, February 6, 2006 10:39 AM

Triggered Task

5-339

Sets the priority for the task, where 1 is the lowest priority and 15 the
highest. Higher priority tasks can preempt tasks that have lower priority,
unless the preemptable flag (Preemption flag option on the HWI block)
prevents preempting the task.

Stack size (bytes)
Specify the size of the stack the task uses. The default value is 4096 bytes.
Take care to set the stack size as large as necessary. If the task uses more
than the allotted space it can write into other memory areas with
unintended results.

Stack memory segment
Specify where the stack resides in memory by specifying the memory
segment. Additional information about DSP/BIOS memory segments also
appears in the Target Preferences block in the model.

Synchronize data transfer of this task with caller task
Specify whether this task should synchronize data transfer with the calling
task. Select this option to enable synchronization. Clearing this option
enables the Timer resolution option.

Timer resolution
When you direct the not to synchronize data with the calling task, lets you
set the resolution of the timer. Enter the desired resolution in seconds. The
default is 1/1000 seconds, 0.001.

See Also HWI, Task

tic6000.book Page 339 Monday, February 6, 2006 10:39 AM

UDP Receive

5-340

5UDP ReceivePurpose Receive uint8 vector as UDP message

Library Host Communication Library in Embedded Target for TI C6000 DSP

Description A UDP message comes into this block from the transport layer. The block
passes the message to the next downstream block. One block output is the data
vector from the message. The second output is a flag that indicates when new
UDP message is available.

Models can contain only one UDP Receive block.

Dialog Box

IP address to receive from (0.0.0.0 to accept all)
Specifies the IP address from which the block accepts messages. Setting
the address 0.0.0.0 configures the block to accept messages from any IP
address. Setting a specific address, not 0.0.0.0, directs the block to accept
messages from the specified address only.

tic6000.book Page 340 Monday, February 6, 2006 10:39 AM

UDP Receive

5-341

IP port to receive from
Specify the port the block accepts messages from on this machine. The
other end of the communication, usually a UDP Send block, sends
messages to this port. The default value is 25000, but the values range from
0 to 65535.

Output port width (bytes)
Specifies the width of messages that the block accepts. When you design
the transmit end of the UDP communication channel, you decide the
message width. Set this to a value as large or larger than any message you
expect to receive.

Sample time (seconds)
Use this option to specify when the block polls for new messages. Entering
-1 lets the block inherit the sample time from an upstream block. Setting
this to a specific value, often large, can reduce the chances that UDP
messages get dropped. By default, the sample time is 0.01 seconds.

See Also Byte Pack, Byte Reversal, Byte Unpack, UDP Send

tic6000.book Page 341 Monday, February 6, 2006 10:39 AM

UDP Send

5-342

5UDP SendPurpose Send UDP message to host

Library Host Communication Library in Embedded Target for TI C6000 DSP

Description The UDP send block receives a uint8 vector that it sends as a UDP message to
the host. Input must be in the form of a uint8 vector with UDP format.

Models can contain only one UDP Send block.

Dialog Box

IP address to send to (255.255.255.255 for broadcast)
Specify the IP address to which the block sends the message. Entering the
address 255.255.255.255 tells the block to broadcast the message to any
listening IP address. Entering a specific IP address limits the block to
sending the message to the specified address.

IP port to send to

tic6000.book Page 342 Monday, February 6, 2006 10:39 AM

UDP Send

5-343

Specify the port on the host to which the block sends the message.

Use the following local IP port
Specify the local IP port the block sends the message from. Entering -1 (the
default value) for this option allows the network to select automatically the
local IP port to use to send the message.

If the address you are sending to expects the message to come from
a specific port, enter that port address here. If you enter a port number in
the UDP Receive block option IP port to receive from, enter that port
identifier here.

Sample time
Sample time tells the block how long to wait before polling for new
messages.

See Also Byte Pack, Byte Reversal, Byte Unpack, UDP Receive

tic6000.book Page 343 Monday, February 6, 2006 10:39 AM

UDP Send

5-344

tic6000.book Page 344 Monday, February 6, 2006 10:39 AM

A
Appendix—Supported
Hardware and Issues

Supported Hardware for Targeting
(p. A-2)

Lists the hardware that the Embedded Target for TI
C6000 DSP supports. Includes comments about
supported operating systems where needed.

Requirements for the DM642 EVM
(p. A-4)

Points out some details about using the DM642 target.

Continuing Issues with Embedded
Target for TI C6000 DSP (p. A-9)

Describes some important features about targeting
particular hardware.

tic6000.book Page 1 Monday, February 6, 2006 10:39 AM

A Appendix—Supported Hardware and Issues

A-2

Supported Hardware for Targeting

Using the C6000 target in Real-Time Workshop, the Embedded Target for TI
C6000 DSP supports the following boards produced by TI and other
manufacturers.

To support code generation for your targets, the Embedded Target for TI C6000
DSP offers an option for the C6000 target that provides a Real-Time Workshop
(RTW) target you use to generate executable code that runs on the supported

Supported Board Designation Board Description

TMS320C6416 DSK C6416 DSP Starter Kit. Does not work on
Microsoft Windows™ NT platforms.

DM642 EVM DM642 Evaluation module for developing
video processing algorithms and
applications

TMS320C6701 EVM C6701 Evaluation Module.

TMS320C6711 DSK C6711 DSP Starter Kit.

TMS320C6713 DSK C6713 DSP Starter Kit.Does not work on
Microsoft Windows™ NT platforms.

TMDX326040A Daughter
Card. Also called the
PCM3003 Audio Daughter
Card

Supplemental card to use with the C6711
DSK. Provides a high quality (48 KHz,
16-bit) codec to act in place of the one on
the C6711 DSK.

C6xxx simulators in CCS Digital signal processor simulators in
CCS. You cannot run models on your
simulator because simulators do not
simulate the codec on the board. You can
generate code to the simulators and use
CCS and RTDX links with them.

Custom boards based on
supported C6000 processors

Code generation for targets that are not
explicitly supported, but that use
supported DSPs, such as C6701 or C6416.

tic6000.book Page 2 Monday, February 6, 2006 10:39 AM

Supported Hardware for Targeting

A-3

boards, or to build a project in CCS IDE. You select this option when you set
the simulation parameters in Real-Time Workshop for your model.

Within the same C6000 target in Real-Time Workshop, the options let you
generate code specifically for any of the supported targets, or to build a project
in CCS. When you set the simulation parameters for your model in Real-Time
Workshop, you can choose to generate target-specific executable code when you
use target-specific blocks in your Simulink model. Target specific blocks, like
the blocks in the C64x DSP library, use code optimized for your specified target.

Texas Instruments produces the evaluation modules and DSP starter kits to
help developers create digital signal processing applications for the Texas
Instruments digital signal processors. You can create, test, and deploy your
processing software and algorithms or filters on the target processors without
the difficulties inherent in starting with the digital signal processor itself and
building the support hardware to test the application on the processor.

Instead, the development boards provide the input hardware, output
hardware, timing circuitry, memory, and power for the digital signal
processors. TI provides the software tools, such as the C compiler, linker,
assembler, and integrated development environment, for PC users to develop,
download, and test their algorithms and applications on the processors.

tic6000.book Page 3 Monday, February 6, 2006 10:39 AM

A Appendix—Supported Hardware and Issues

A-4

Requirements for the DM642 EVM
Certain requirements for the DM642 EVM differ from the other supported
targets. This section provides details about using both the DM642 EVM
hardware target and the simulator. Using the DM642 requires the following:

• DM642 EVM version identification

• Separate CCS installation version 2.2

• DM642 EVM patch to upgrade CCS version to 2.20.18

• XDS560 (high speed RTDX emulator) or XDS510 (Regular RTDX emulator,
if your model does not require high-speed RTDX capability)

• Device Driver Development Kit (DDK) patch

• TMS320DM642 Digital Media Development Kit (DMDK)

• Projects must enable DSP/BIOS. Embedded Target for TI C6000 DSP does
not support operations on the DM642 EVM without DSP/BIOS.

About DM642 EVM Board Revisions
Working with DM642 EVM boards requires that you identify the board
revision that you own.

Identifying Your DM642 EVM Board Revision
Spectrum Digital has released three different versions of the DM642 EVM
board. DM642 EVM board Versions 1 and 2 are the same except for the CPU
clock speed. Version 2 uses a 720 MHz clock, rather than the 600 MHz clock on
Version 1. Both versions use Phillips SAA7115 video decoders.

Version 3 is a redesign of the board that uses TI TVP5146/5150 video decoders
and a CPU clock speed of 720 MHz. To use Version 3 boards, you must install
updated TI video drivers (included with TI Device Driver Developer’s Kit
(DDK)) to match the new decoders.

Here is how you identify the correct version number of your board:

• Version 1—Original board with 600 MHz DM642, Philips SAA7115 video
decoders. ASSY 506840 Rev. D on back of board, 50 MHz oscillator.

• Version 2—Original board revised to use 720 MHz DM642, Philips SAA7115
video decoders. ASSY 506840 Rev. D on back of board, 60 MHz oscillator.

tic6000.book Page 4 Monday, February 6, 2006 10:39 AM

Requirements for the DM642 EVM

A-5

• Version 3—Revised board with 720 MHz DM642, TI TVP5146/5150 video
decoders and HD filters. ASSY 507340 Rev. B on back of board, 60 MHz
oscillator.

Configuring the Target Preferences Block for Your DM642 EVM
When you use the DM642EVM Target Preferences block, make sure that you
enter the CPU clock speed that matches the CPU clock on your board. The
figure below shows the correct setting of 600 for Version 1 boards in CPU clock
speed (MHz). For Version 2 and 3 boards, change the clock speed to 720.

tic6000.book Page 5 Monday, February 6, 2006 10:39 AM

A Appendix—Supported Hardware and Issues

A-6

Configuring the DM642 EVM ADC Block
If you have a DM642 EVM Version 3 board, make sure that you have the
updated video drivers in your CCS installation directory and that you select the
correct decoder type when you use DM642 EVM Video ADC blocks as shown in
the following figure.

tic6000.book Page 6 Monday, February 6, 2006 10:39 AM

Requirements for the DM642 EVM

A-7

Setting Up Code Composer Studio for the
DM642 EVM
Your DM642 EVM requires a separate Code Composer Studio installation. To
use the EVM when you have more than one CCS installation, you need to
install the CCS for the DM642 EVM in a separate location. You cannot merge
your DM642 CCS installation with existing or other CCS installations. Follow
the installation guidelines provided by Texas Instruments when you install
CCS, to use your DM642 EVM.

Install the patch C6000-2.20.00-FULL-to-C6000-2.20.18-FULL.EXE as
directed by Texas Instruments.

Finally, install the Device Driver Development Kit patch
ddk-v1-10-00-23.exe.

tic6000.book Page 7 Monday, February 6, 2006 10:39 AM

A Appendix—Supported Hardware and Issues

A-8

About the Device Driver Development Kit
To use the Embedded Target for TI C6000 DSP software with your DM642, you
need to install the Device Driver Developer Kit (DDK) patch that you get from
Texas Instruments.

While the DDK is optional for some DM642 operations, the Embedded Target
for TI C6000 DSP requires the DDK for code generation. According to TI, the
DDK is the TI Device Driver Development Kit. Version 1.1 of the DDK includes
device drivers for the DM642 EVM peripherals that are used by many of the
examples and demos.

While the DDK is not required to run precompiled code, it is needed to rebuild
or develop code. You should install the DDK in the folder TI_DIR.

The DDK patch for CCS is an optional patch that the Embedded Target for TI
C6000 DSP requires.

About the XDS560 PCI-Bus JTAG Scan-Based
Emulator
You need the XDS560 Emulator to use the DM642 with the Embedded Target
for TI C6000 DSP. While the XDS510 Emulator might work, the target
software has not been tested with it.

tic6000.book Page 8 Monday, February 6, 2006 10:39 AM

Continuing Issues with Embedded Target for TI C6000 DSP

A-9

Continuing Issues with Embedded Target for TI C6000 DSP
This section details some target operations that you should know about as you
use the Embedded Target for TI C6000 DSP.

• “Setting Up Code Composer Studio for the DM642 EVM” on page A-7

• “Setting the Clock Speed on the C6713 DSK” on page A-9

• “Simulink Stop Block Works Differently When Not Using DSP/BIOS
Features” on page A-10

Setting the Clock Speed on the C6713 DSK
The C6713DSK PLL is not automatically set to the correct CPU Clock
frequency when you try to target the board. When you power-up your DSK, it
runs at a clock speed of 50 MHz. However, the C6713 is capable of running at
225 MHz.

If you generate code incorporating the DSP/BIOS real-time operating system,
the PLL is automatically configured for you at run-time tjo use the correct clock
speed. If you are not using DSP/BIOS in your project, you must manually
configure the PLL to the correct clock rate before running your code.

Setting the PLL to Drive the CPU at 225 MHz
To set the C6713 DSK PLL to drive the CPU at 225 MHz, perform the following
steps. Be sure you have defined your GEL file for your DSK in the Setup Utility
for CCS.

1 Launch Code Composer Studio.

2 Open your C6713 DSK project with the GEL file.

3 Select GEL->Resets->InitPLL from the menu bar in CCS.

To make this happen whenever you open Code Composer Studio to use your
C6713 DSK, edit the file \ti\cc\gel\dsk6713.gel. Add the following
command to the StartUp() function:

init_pll();

This tells the GEL file to initialize the PLL to operate at 225 MHz.

tic6000.book Page 9 Monday, February 6, 2006 10:39 AM

A Appendix—Supported Hardware and Issues

A-10

On the DM642 EVM, ADC-DAC Loopback Does Not Display An RGB Image
Correctly After Power-Up
When you set up the DM642 EVM to use loopback from the ADC to the DAC,
the DAC block does not reproduce the captured image correctly immediately
after you power up the board. Colors in the image are not shown correctly.

To get a clean image, reload the program to the target and run the program
again. This also happens with the examples Texas Instruments ships with the
DM642 EVM product.

Simulink Stop Block Works Differently When Not
Using DSP/BIOS Features
If you are using the Simulink Stop block in your model, but you are not using
DSP/BIOS features, your model might take longer to stop when it is running
on the target than if you are using DSP/BIOS.

The condition the model uses to detect the stop processing flag is different
when you do not use DSP/BIOS. The result is that the model may not detect
and respond to the flag as promptly, taking longer to stop the running model
on the target.

tic6000.book Page 10 Monday, February 6, 2006 10:39 AM

Index-1

Index

A
adding DSP/BIOS to generated code 2-77
applications

logging 2-58
Archive_CCS_Library 2-93

B
block limitations using model reference 2-94
block recommendations 2-105
blocks

C62x 5-4
C6416 5-8
C64x 5-6
C6701 5-2
C6711 5-3
C6713 5-9
core support 5-11
DM642 5-10
RTDX 5-4
TMDX326040A 5-12
use in target models 2-105

blocks to avoid in models 2-105
build configuration

compiler options, default 2-91
default 2-90
MW_custom 2-90

build directory
contents of 2-132, 2-163
naming convention 2-120

building models
use C62x DSP Library blocks 4-8

C
C6000 model reference 2-92
C6000 Target

code generation options 2-77
compiler options 2-83
run-time options 2-80
targeting Code Composer Studio 2-164
TI C6000 linker options 2-89

c6000 target preferences block 2-32
C62x Autocorrelation block 5-23
C62x Bit Reverse block 5-27
C62x Block Exponent block 5-27
C62x blocks 5-4
C62x Complex FIR block 5-28
C62x Convert Floating-Point to Q.15 block 5-30
C62x Convert Q.15 to Floating-Point block 5-31
C62x DSP Library blocks

building models 4-8
choosing blocks to optimize code 4-9
common characteristics 4-3
Q format notation 4-5
using source and sink blocks 4-9

C62x FFT block 5-32
C62x General Real FIR block 5-34
C62x LMS Adaptive Filter block 5-36
C62x Matrix Multiplication block 5-39
C62x Matrix Transpose block 5-42
C62x Radix-2 FFT block 5-43
C62x Radix-2 IFFT block 5-45
C62x Radix-4 Real FIR block 5-47
C62x Radix-8 Real FIR block 5-49
C62x Real IIR block 5-53
C62x Reciprocal block 5-56
C62x Symmetric Real FIR block 5-57
C62x Vector Dot Product block 5-61
C62x Vector Maximum Index block 5-62
C62x Vector Maximum Value block 5-63
C62x Vector Minimum Value block 5-64
C62x Vector Multiply block 5-65

tic6000.book Page 1 Monday, February 6, 2006 10:39 AM

Index

Index-2

C62x Vector Negate block 5-66
C62x Vector Sum of Squares block 5-67
C62x Weighted Vector Sum block 5-68
C6416 blocks 5-8
C6416 DSK ADC block 5-87
C6416 DSK DAC block 5-92
C6416 DSK DIP Switch block 5-94
C6416 DSK LED block 5-99
C6416 DSK RESET block 5-100
C64x Autocorrelation block 5-101
C64x Bit Reverse block 5-105
C64x Block Exponent block 5-105
C64x blocks 5-6
C64x Complex FIR block 5-106
C64x Convert Floating-Point to Q.15 block

5-108
C64x Convert Q.15 to Floating-Point block

5-109
C64x FFT block 5-110
C64x General Real FIR block 5-112
C64x LMS Adaptive Filter block 5-114
C64x Matrix Multiplication block 5-117
C64x Matrix Transpose block 5-120
C64x Radix-2 FFT block 5-121
C64x Radix-2 IFFT block 5-123
C64x Radix-4 Real FIR block 5-125
C64x Radix-8 Real FIR block 5-127
C64x Real IIR block 5-131
C64x Reciprocal block 5-134
C64x Symmetric Real FIR block 5-135
C64x Vector Dot Product block 5-139
C64x Vector Maximum Index block 5-140
C64x Vector Maximum Value block 5-141
C64x Vector Minimum Value block 5-142
C64x Vector Multiply block 5-143
C64x Vector Negate block 5-144
C64x Vector Sum of Squares block 5-145

C64x Weighted Vector Sum block 5-146
C6701 blocks 5-2
C6701 EVM

confirming proper configuration 2-100
general code generation options 2-76
start/stop models 2-98
target options 2-71
TLC debugging options 2-74
tutorial about multirate applications 2-119

C6701 EVM ADC block 5-165
C6701 EVM blocks

tutorial 2-119
C6701 EVM DAC block 5-172
C6701 EVM DIP Switch block 5-177
C6701 EVM directories

build 2-120
working 2-153

C6701 EVM LED block 5-181
C6701 EVM RESET block 5-183
C6701EVM ADC

choose the codec data format 2-24
choose the sample rate 2-22
select the data type 2-25
select the scaling 2-26
use fixed-point arithmetic 2-26

C6701EVM ADC block 2-21
C6701EVM ADC dialog 2-23
C6701EVM DAC block 2-27

choose the codec data format 2-28
choose the scaling 2-28

C6701EVM DAC dialog 2-27
C6701EVM LED block

configure the block 2-29
select the target LED 2-29
the overrun indicator 2-30

c6701evmtest.mdl 2-101
errors while running 2-137

tic6000.book Page 2 Monday, February 6, 2006 10:39 AM

Index

Index-3

use 2-101
verifying that the model is running 2-103

C6711 blocks 5-3
C6711 DSK

configure 2-133
fixed sample rate 2-23
start/stop models 2-140
tutorial about multirate applications 2-153

C6711 DSK ADC block 5-200
C6711 DSK blocks

tutorial 2-153
C6711 DSK DAC block 5-203
C6711 DSK DIP Switch block 5-205
C6711 DSK directories

build 2-153
working 2-120

C6711 DSK LED block 5-209
C6711 DSK RESET block 5-210
c6711dsktest.mdl 2-135

errors while running 2-103
verifying that the model is running 2-137

C6713 blocks 5-9
C6713 DSK ADC block 5-227
C6713 DSK DAC block 5-231
C6713 DSK DIP Switch block 5-233
C6713 DSK LED block 5-238
C6713 DSK RESET block 5-239
CCS IDE

create projects for the IDE 2-164
Code Composer Studio 2-164
code generation for subsystem 2-50
codec data format 2-24
configure DM642 blocks 2-51
configure the software timer 2-36, 5-72, 5-150,

5-186, 5-213, 5-244, 5-262
configure your C6711 DSK for Embedded Target

for TI C6000 DSP 2-133

confirm your C6701 EVM configuration 2-100
convert data types 4-8
core support blocks 5-11
CPU clock speed 2-36, 5-72, 5-150, 5-186, 5-213,

5-244, 5-262
current CPU clock speed 2-36, 5-72, 5-150, 5-186,

5-213, 5-244, 5-262
custom C6000 target

about 2-170
preferences block 2-170
setup 2-170

custom hardware guidelines 2-166
custom hardware, target 2-166
custom_MW compiler options 2-91

D
data format, 16-bit linear 2-24
data format, 8-bit A law 2-24
data format, 8-bit mu law 2-24
data format, codec 2-24
data type, select 2-25
default build configuration 2-90
default compiler options 2-91
disabling logging 2-59
discrete solver 2-69
DM642 blocks 5-10
DM642 blocks, configure 2-51
DSP/BIOS

added files 3-8
adding to generated code 2-77
files removed from project 3-9

DSP/BIOS, enabling 3-22

tic6000.book Page 3 Monday, February 6, 2006 10:39 AM

Index

Index-4

E
Embedded Target for TI C6000 DSP 1-4

about 1-2, 1-4
configure C6701EVM ADC blocks 2-21
configure C6701EVM LED blocks 2-29
configure C6711DSK LED blocks 2-29
configure the C6701EVM DAC block 2-26
create Simulink model for targeting 2-104
errors while running test model c6701evmtest

2-103
errors while running test model c6711dsktest

2-137
expected background for use 1-5
hardware and OS requirements 1-9
information for new users 1-5
peripheral hardware for testing C6701 EVM

operation 2-100
peripheral hardware for testing C6711 DSK

operation 2-134
procedure for testing the operation 2-101
requirements for TI software 1-10
select the target LED 2-29
starting/stopping test model c6701evmtest

2-104
starting/stopping test model c6711dsktest

2-137
suitable applications 1-3
test installation and operation of the C6701

EVM 2-100
test installation and operation of the C6711

DSK 2-134
use C6701 EVM blocks 2-11

enabling DSP/BIOS 3-22
errors running c6701evmtest.mdl 2-103
errors running c6711dsktest.mdl 2-137
external LED 2-29

F
files added to DSP/BIOS project 3-8
files removed from DSP/BIOS projects 3-9
fixed-point numbers 4-4

signed 4-4
fixed-step solver 2-69
4-bit IMA ADPCM 2-24
From Rtdx block 5-311

G
generate code for subsystem 2-50
generate optimized code 2-77
generate_code_only option 2-80

H
halting a running process 2-104
hardware requirements for Embedded Target for TI

C6000 DSP 1-9
hardware, custom 2-166
hardware, guidelines for using custom boards

2-166
headroom meter 2-30

I
Incorporate DSP/BIOS option 2-77
indicator, overrun 2-30
initialized memory 2-169
inline Signal Processing Blockset functions option

2-77
internal LED 2-29
interrupt threshold 2-86

set value 2-89

tic6000.book Page 4 Monday, February 6, 2006 10:39 AM

Index

Index-5

L
LED block 2-29
LED target 2-29
logging

about 2-59
logging in models 2-58
logging options in Simulink Parameters dialog

2-59
logging, disabling 2-59

M
management, memory 2-169
map memory 2-169
map, memory 2-169
memory

initialized 2-169
management 2-169
map 2-169
section 2-169
segment 2-169
uninitialized 2-169

memory maps 2-169
-mi option 2-86
model reference 2-92

Archive_CCS_Library 2-93
block limitations 2-94
setting build action 2-93
target preferences blocks 2-94

models
logging 2-58

MW_custom build configuration 2-90

O
optimization,target specific 2-77
optimize code 4-9

OS requirements for Embedded Target for TI
C6000 DSP 1-9

overflow mode 2-28
overrun indicator 2-30
overrun notification method 2-82

P
procedure for testing Embedded Target for TI

C6000 DSP 2-101
profile generated code 3-10
profile report

about 3-10
reading 3-14
sample 3-14

projects, create for CCS 2-164

Q
Q format notation 4-5

R
Real-Time Workshop solver options 2-69
RTDX blocks 5-4
RTDX links. See links.
RTW build options

generate_code_only 2-80
run the EVM confidence test 2-100

S
sample rate for C6711 DSK 2-23
saturate 2-28
section,memory 2-169
segment, memory 2-169
select blocks for models 2-105

tic6000.book Page 5 Monday, February 6, 2006 10:39 AM

Index

Index-6

select data type 2-25
set stack size 2-90
set target preferences 2-32
signed fixed-point numbers 4-4
simulator

device cycle accurate 2-4
general use 2-5
use simulators for development 2-4
use with DSP/BIOS 2-4
use with RTDX 2-4

simulators, about 2-4
solver option settings 2-69
source and sink blocks 4-9
stack size, set stack size 2-90
stopping running models 2-104
subsystem model code generation 2-50
suitable applications for Embedded Target for TI

C6000 DSP 1-3

T
table of blocks to avoid in models 2-105
target Code Composer Studio 2-164
target configuration options

build action 2-80
compiler verbosity 2-86
create .map files 2-90
generate code only 2-74
make command 2-74
memory model 2-84
overrun action 2-82
overrun notification method 2-82
retain .asm files 2-89
retain .obj files 2-90
symbolic debugging 2-89
system target file 2-72
template makefile 2-73

target custom hardware 2-166
target LED 2-29
target preferences

set 2-32
target preferences block

about 2-32
target preferences blocks in referenced models

2-94
target specific optimization 2-77
test your Embedded Target for TI C6000 DSP

installation
C6701 EVM 2-100
C6711 DSK 2-134

threshold interrupt
about 2-86
enable 2-86

threshold, interrupt
set value 2-89

timer, configure 2-36, 5-72, 5-150, 5-186, 5-213,
5-244, 5-262

TMDX326040A blocks 5-12
To Rtdx block 5-334
tutorial for C6701 EVM blocks 2-119
tutorial for C6711 DSK blocks 2-153

U
uninitialized memory 2-169
use blocks for the C6701 EVM 2-119
use blocks for the C6711 DSK 2-153
use C62x DSP Library blocks 4-1
use C6701 EVM blocks 2-119
use c6701evmtest.mdl 2-101
use C6711 DSK blocks 2-153
use logging in models 2-58
user LED 2-29

tic6000.book Page 6 Monday, February 6, 2006 10:39 AM

Index

Index-7

V
verify that c6701evmtest.mdl is running 2-103,

2-137
video capture setup 2-51
video display setup 2-51

W
working directory 2-120
wrap 2-28

tic6000.book Page 7 Monday, February 6, 2006 10:39 AM

Index

Index-8

tic6000.book Page 8 Monday, February 6, 2006 10:39 AM

	What Is Embedded Target for TI C6000 DSP?
	Introducing Embedded Target for the TI TMS320C6000 DSP Platform
	Suitable Applications

	About Embedded Target for C6000 DSP
	Using This Guide
	Expected Background

	Configuration Information
	Getting Started
	Platform Requirements—Hardware and Operating System

	Targeting C6000 DSP Hardware
	Overview
	About the Tutorials

	TI C6000 and Code Composer Studio IDE
	Supported Boards and Simulators
	Typical Hardware Setup for Developing Models

	Using the C6000lib Blockset
	Configuring ADC Blocks
	Configuring DAC Blocks
	Configuring LED Blocks
	Using the Overrun Indicator Feature
	Configuring Reset Blocks
	Configuring Target Preferences Blocks
	Board Info Pane
	Memory Pane
	Sections Pane
	DSP/BIOS Pane
	Configuring DM642 EVM Video ADC and Video DAC Blocks
	Creating DSP Application Models for Targeting
	Using Logging in Your DSP Applications
	Generating Code from Real-Time Models

	Schedulers and Timing
	Timer-Based Versus Asynchronous Interrupt Processing
	Synchronous Scheduling
	Asynchronous Scheduling
	Use Cases for Asynchronous Scheduling
	Scheduling Considerations

	Setting Real-Time Workshop Options for C6000 Hardware
	Real-Time Workshop Options for C6000 Hardware
	Real-Time Workshop Pane Options
	Debug Pane Options
	Optimization Pane Options
	TI C6000 Code Generation Pane Options
	TI C6000 Compiler/Linker Options
	Embedded Target for TI C6000 DSP Default Project Configuration—custom_MW

	Model Reference and Embedded Target for TI�C6000�DSP
	How Model Reference Works
	Using Model Reference with Embedded Target for TI C6000 DSP

	Targeting Your C6701 EVM and Other Hardware
	Typical Targeting Process
	Targeting the C6701 Evaluation Module
	Configuring Your C6701 EVM
	Confirming Your C6701 EVM Installation
	Testing Your C6701 EVM
	Creating Your Simulink Model for Targeting

	C6701 EVM Tutorial 2-1—Single Rate Application
	Specifying Configuration Parameters for Your Model

	C6701 EVM Tutorial 2-2—A Multistage Application
	Targeting Your C6711 DSK and Other Hardware
	Configuring Your C6711 DSK
	Confirming Your C6711 DSK Installation
	Testing Your C6711 DSK
	Running Models on Your C6711 DSK

	C6711 DSK Tutorial 2-3—Single Rate Application
	Setting Configuration Parameters for Your Model

	C6711 DSK Tutorial 2-4—A More Complex Application
	Creating Code Composer Studio Projects Without Building
	Targeting Custom Hardware
	Typical Targeting Process
	To Target a Custom C6000 Target
	Sections Pane
	To Create Memory Maps for Targets

	Using Embedded Target for TI C6000 DSP with Real-Time Workshop Embedded Coder

	Targeting with DSP/BIOS Options
	Introducing DSP/BIOS
	DSP/BIOS and Targeting Your TI C6000 DSP
	DSP/BIOS Configuration File
	Memory Mapping
	Hardware Interrupt Vector Table
	Linker Command File

	Code Generation with DSP/BIOS
	Generated Code Without and With DSP/BIOS

	Profiling Generated Code
	Profiling Subsystems
	Profiling Multitasking Systems
	The Profiling Report
	Interrupts and Profiling
	Reading Your Profile Report
	Definitions of Report Entries
	Profiling Your Generated Code
	To Enable Profiling for Your Generated Code
	To Create Atomic Subsystems for Profiling

	Using DSP/BIOS with Your Target Application
	To Enable DSP/BIOS When You Generate Code

	Using the C62x and C64x DSP Libraries
	About the C62x�and�C64x DSP�Libraries
	Characteristics Common to C62x and C64x Library Blocks

	Fixed-Point Numbers
	Signed Fixed-Point Numbers
	Q Format Notation

	Building Models
	Converting Data Types
	Using Sources and Sinks
	Choosing Blocks to Optimize Code

	Block Reference
	Blocks — By Category
	Blocks in Target Preferences Library (c6000tgtprefs)
	Blocks in C6701 EVM Library (c6701evmlib)
	Blocks in C6711 DSK Library (c6711dsklib)�
	Blocks in RTDX Instrumentation Library (rtdxblocks)
	Blocks in the C62x DSP Library (tic62dsplib)�
	Blocks in the C64x DSP Library (tic64dsplib)�
	Blocks in the C6416 DSP Library (c6416dsklib)�
	Blocks in the C6713 DSP Library (c6713dsplib)�
	DSP Blocks in the DM642 EVM Library (dm642evmlib)
	Blocks in the C6000 DSP Core Support Library (c6000dspcorelib)
	Blocks in the TMDX326040A DSP Support Library (tmdx326040lib)�
	Blocks in the Host Communications Library (hostcommlib)
	Blocks in the DSP/BIOS Library (dspbioslib)

	Blocks — Alphabetical List
	Byte Pack
	Byte Reversal
	Byte Unpack
	C62x Autocorrelation
	C62x Bit Reverse
	C62x Block Exponent
	C62x Complex FIR
	C62x Convert Floating-Point to Q.15
	C62x Convert Q.15 to Floating-Point
	C62x FFT
	C62x General Real FIR
	C62x LMS Adaptive FIR
	C62x Matrix Multiply
	C62x Matrix Transpose
	C62x Radix-2 FFT
	C62x Radix-2 IFFT
	C62x Radix-4 Real FIR
	C62x Radix-8 Real FIR
	C62x Real Forward Lattice All-Pole IIR
	C62x Real IIR
	C62x Reciprocal
	C62x Symmetric Real FIR
	C62x Vector Dot Product
	C62x Vector Maximum Index
	C62x Vector Maximum Value
	C62x Vector Minimum Value
	C62x Vector Multiply
	C62x Vector Negate
	C62x Vector Sum of Squares
	C62x Weighted Vector Sum
	C6416DSK
	C6416 DSK ADC
	C6416 DSK DAC
	C6416 DSK DIP Switch
	C6416 DSK LED
	C6416 DSK RESET
	C64x Autocorrelation
	C64x Bit Reverse
	C64x Block Exponent
	C64x Complex FIR
	C64x Convert Floating-Point to Q.15
	C64x Convert Q.15 to Floating-Point
	C64x FFT
	C64x General Real FIR
	C64x LMS Adaptive FIR
	C64x Matrix Multiply
	C64x Matrix Transpose
	C64x Radix-2 FFT
	C64x Radix-2 IFFT
	C64x Radix-4 Real FIR
	C64x Radix-8 Real FIR
	C64x Real Forward Lattice All-Pole IIR
	C64x Real IIR
	C64x Reciprocal
	C64x Symmetric Real FIR
	C64x Vector Dot Product
	C64x Vector Maximum Index
	C64x Vector Maximum Value
	C64x Vector Minimum Value
	C64x Vector Multiply
	C64x Vector Negate
	C64x Vector Sum of Squares
	C64x Weighted Vector Sum
	C6701EVM
	C6701 EVM ADC
	C6701 EVM DAC
	C6701 EVM DIP Switch
	C6701 EVM LED
	C6701 EVM RESET
	C6711DSK
	C6711 DSK ADC
	C6711 DSK DAC
	C6711 DSK DIP Switch
	C6711 DSK LED
	C6711 DSK RESET
	C6713DSK
	C6713 DSK ADC
	C6713 DSK DAC
	C6713 DSK DIP Switch
	C6713 DSK LED
	C6713 DSK RESET
	CPU Timer
	Custom C6000
	DM642EVM
	DM642 EVM Audio ADC
	DM642 EVM Audio DAC
	DM642 EVM FPGA GPIO Read
	DM642 EVM FPGA GPIO Write
	DM642 EVM IP Config
	DM642 EVM Video ADC
	DM642 EVM Video DAC
	DM642 EVM LED
	DM642 EVM UDP Receive
	DM642 EVM UDP Send
	DM642 EVM Video Port
	DM642 EVM RESET
	From Memory
	From Rtdx
	HWI
	Idle Task
	Hardware Interrupt
	Task
	TMDX326040 ADC
	TMDX326040 DAC
	To Memory
	To Rtdx
	Triggered Task
	UDP Receive
	UDP Send

	Appendix—Supported Hardware and Issues
	Supported Hardware for Targeting
	Requirements for the DM642 EVM
	About DM642 EVM Board Revisions
	Setting Up Code Composer Studio for the DM642�EVM
	About the XDS560 PCI-Bus JTAG Scan-Based Emulator

	Continuing Issues with Embedded Target for TI�C6000�DSP
	Setting the Clock Speed on the C6713 DSK
	Simulink Stop Block Works Differently When Not Using DSP/BIOS Features

	Index

